
Convertible Undeniable Signatures

Joan Boyar* David Chaum
Aarhus University

Ivan Damg&d
CWI Aarhus University

Torben Pedersen

Aarhus University

Abstract

We introduce a new concept called convertible undeniable signature schemes. In these
schemes, release of a single bit string by the signer turns all of his signatures, which were
originally undeniable signatures, into ordinary digital signatures. We prove that the ex-
istence of such schemes is implied by the existence of digital signature schemes. Then,
looking at the problem more practically, we present a very efficient convertible undeniable
signature scheme. This scheme has the added benefit that signatures can also be selectively
converted.

1 Introduction

Undeniable signatures were introduced in [CvASO]. For certain applications, these
signatures are preferable to ordinary digital signatures because simply copying a sig-
nature does not produce something which can be directly verified. Instead, signatures
are verified via a protocol between the signer and verifier, so the cooperation of the
signer is necessary. The signer is not, however, allowed to deny a signature simply by
refusing to participate in the protocol; there must also be a protocol which the signer
can use in order to deny an invalid signature.

If, for example, a software company wanted to certify that they had provided a
certain program, they could sign it using an undeniable signature. Only someone who
had directly purchased the software from that company could verify the signature and
be certain that no viruses had been introduced. However, if the software company
sold programs which contained bugs, they should be unable to deny their signatures
afterwards.

In addition to the properties of undeniable signatures described above, it could be
useful if there were some secret information, which the signer could release at some
point after signing, which would turn the undeniable signatures into ordinary digital
signatures. Thus these signatures could be verified without the aid of the signer,

‘Supported in part by the ESPRIT II Basic Research Actions Program of the EC under contract
No. 3075 (Project ALCOM).

A.J. Menezes and S.A. Vanstone (Eds.): Advances in Cryptology - CRYPT0 ‘90, LNCS 537, pp. 189-205, 1991.
0 Springer-Verlag Berlin Heidelberg 1991

190

but they should still be difficult to forge. We will call such signatures convertible
undeniable signatures.

A first advantage in the software company example of using convertible undeniable
signatures is that several employees of the company could be given the ability to verify
signatures, without being able to sign messages.' This would pose a smaller security
risk than if the entire secret key to the system was distributed this way.

Secondly, if the company later goes bankrupt (or dissolves for any reason), it can
release the secret information needed to verify signatures, so the software can still
be used safely. At this point, the company would no longer be protected against the
pirating of its software, but it would no longer care much about it either.

Undeniable signatures could also be useful in any situation in which an individual
wishes to sign a document, but does not want the press to be able to prove that he
signed that document. Suppose further that this individual must allow some other
party to prove later that the signature is valid, without allowing this other paxty to
forge signatures. An example of such a situation is a last will and testament which
contains instructions that the signer would not want made public. After the signer's
death, it is important that the signer's attorney be capable of validating the signature.
The attorney should not, however, be capable of creating a new will and forging the
deceased's signature. If a convertible undeniable signature is used, the attorney can
be given the secret information which converts the.undeniable signature into a digital
signature. Then the attorney could act on the signer's behalf, verifying and denying
signatures.

To summarize, for each signer there should be a public key K p and two private
keys Ksl and Ksz. The first private key Ksl should never be released; the signer uses
it to produce signatures. The second private key K s ~ may be released to convert the
undeniable signatures into ordinary digital signatures.

a There should be an efficient algorithm for producing signatures, using the private
keys KSI and Ks2.

0 There should be efficient protocols (efficient for both the signer and the verifier),
one for verifying valid signatures and one for denying invalid signatures. If the
signer participates in one of these protocols successfully, the verifier should be
convinced that the signer had a negligible probability of cheating.

a After the undeniable signatures have been converted to digital signatures, it
should be easy to verify them, so there should be an efficient algorithm which,
given Kp and Ksz, cam be used to verify valid signatures.

In order for a convertible undeniable signature scheme to be secure, it should also
have the following three properties:

0 The verifier should be unable to forge the signer's signature on any message for

1 The verifier may be able to get the signer to sign arbitrary messages.

'The key which converts the undeniable signatures into digital signatures can be used in verifying
and denying protocols which are ser~knowledge prootS based on the circuits for verifying and denying
the underlying digital signatures.

which it has not already seen a signature, even though

191

2 The verifier may be able to get the signer to enter into the verifying or
denying protocol (whichever is appropriate) for arbitrary “signed” messages.

3 The second private key K S 2 may be available. One may assume, however,
that after Ksz is available, the prover refuses to participate in any more
verifying or denying protocols.

The verifier should be unable to produce a string for which the signer, with the
correct public key K p , is unable to either verify or deny that the string is a
signature, even though

1 The verifier may be able to get :he signer to sign arbitrary messages.
2 The verifier may be able to get the signer to enter into the verifying or

denying protocol (whicne b e r is appropriate) for arbitrary %igned” messages.

The verifier should be unable to distinguish between valid and invalid signatures,
with any significant advantage, without entering into one of these protocols with
the signer. See section 3.1 for a formalization of this.

In some applications of convertible undeniable signatures, including that of the
last will and testament, mentioned above, one might prefer to convert only selected
undeniable signatures into digital signatures. (The signer may not wish everything
he ever signed to be public, even after his death.) When a scheme allows this, we will
say that it is a selectaveiy convertzble undenzable signature scheme.

The next section in this paper discusses previous work on undeniable signatures.
In section 3, we first present a formal definition for undeniability, and then we present
a selectively convertible undeniable signature scheme, based on the sole assumption
that a secure digital signature scheme exists. The reader who is more interested in
practical than theoretical results could skip that section and continue with section 4,
in which we present an efficient selectively convertible undeniable signature scheme
based on El Ganal signatures. The final section of the paper is a summary.

2 Related Work
In [CvASO], undeniable signatures were presented for the first time, and an imple-
mentation was described, based on the difficulty of computing discrete logarithms in
a cyclic group of prime order. In this scheme, the public key has the form (g , g z) ,
where g is a generator of the group, and z is the secret key. For a message m, the
signature has the form m”.

In [ChaSO] zero-knowledge denial and verification protocols were presented for
this scheme. Its security and efficiency is based on the fact that the group order is
prime and public, and on the assumption that all messages are bit strings representing
elements in the group (or there is an easy way of checking that a message is in the

These conditions can be met, for example, by using the subgroup of index 2 of Z;,
where p is a prime and p - 1 = 2q for q prime. It is natural to try to generalize this
scheme to other groups, for example by using a composite modulus, or by using the
group on an elliptic curve. Such generalizations could potentially be more secure and

group).

192

could (in the composite modulus case, where one could release 2-l without revealing
z) produce a convertible scheme.

Such a straightforward generalization, however, immediately runs into problems,
most notably the fact that there may be no way (even for the >;gner) to tell whether
a given message represents an element in the cyclic subgroup we are using.

The scheme we present in section 4 avoids these problems, is almost as efficient
as the scheme from [CvASO] when used in the same group,’ and could he generalized
to any group in which discrete log is a hard problem.

3 Theoretical Results

3.1 A definition of undeniability
Undeniable signatures differ from ordinary digital signatures ip. that. ‘Liven an undeni-
able signature, the verifier should be unable to distinguish between vaiid and invaiid
signatures, with any significant advantage, without entering in to eii1ic.r i i verifying or
denying protocol with the signer. In order to make this more precise. ‘,vt* :iced t o have
a simulator which can produce fake signatures which cannot D e uisiin+shed from
. A d signatures. This signature simulator should also be aDie to :Jrotiiice transcripts
of verifying protocols which are indistinguishable from true rranscripts 50 that the ex-
istence of a good transcript does not prove that a signature is valid. This is important
in some applications such as that of the software company wishing to protect against
the piracy of its software. In addition, we must ensure that this task of distinguishung
between fake and valid signatures does not become significantly easier if the verifier
enters into verifying and denying protocols for other messases and signatures.

Definition 3.1
A signature simulator, relative t o a verifier V , is a probabilistic polynomial time
algorithm, which, when given a message m, outputs a string FaiEe(m) and a simulated
transcript F a k e T (F a k e (m) , m) of a verifying conversation between the signer and V ,
“proving” that F a k e (m) is a valid signature.

Definition 3.2
The signature oracle 0, relative to a verzfier V , receives a message m as input and
flips a fair coin to decide whether to

1 run the signature simulator relative to V and give the simulator’s output, or

2 output a random valid signature, Sign(m), and a transcript VaEidT(Sign(m), m),
chosen randomly from the distribution of transcripts from verifying conversa-
tions, involving the true signer and the verifier V, proving that Sign(rn) is a

valid signature.

aThe public keys in the scheme presented here are a little longer than those in [CvASO], and
slightly more computation is required

193

Definition 3.3
The probabilistic polynomial time dzstanguzsher D, attempting to distinguish between
the fake and vaiid outputs of the oracle is dowed to:

1 Choose a message m and give that to the signature oracle 0.

2 Observe an output (s , T) from 0. This pair (s , T) is either from the set F F ,
which contains forgery-transcript pairs of the form

(F a k e (m) , F a k e T (F a k e (m) , m))

or from the set S V , which siqnature-transcript pairs of the form

(Sign(m J, Y u l d T (Sign(m), m)).

3 Interact with the true signer, obtaining some valid signatures on messages in a
set M’, with m 6 M‘.

4 Interact with the true signer iq. -7Yrifying protocols for messages in the set M‘
and signatures in the set S, and in denying protocols for messages in the set
M” and strings in a set S“ created by D, with m @‘ M‘, m # M”, s $? S‘, and
s $2 S“.

Definition 3.4
Let D (s , T , m) denote D’s output when its input is the possible signature s, for
message m, and possible transcript T . Let n be the security parameter. Then, a
signature system is undeniable if, for any verifier V , there exists a signature simulator
relative to V such that, for any polynomial time distinguisher D , and for any constant
c, the following holds for n sufficiently large:

In some applications it would be useful for the verifying and denying protocols to
be more symmetric in that transcripts of denying protocols should not be transferable,
just as transcripts for verifying protocols should not be transferable. If this is the
case, we have symmetric undeniable signatures. To make this more formal, one defines
a denial s imulator relative to a verif ier V similarly to the signature simulator in
definition 3.1, except that the simulator is either given the message m and a valid
signature on m, or it is just given the message m. If the simulator is given m and a
valid signature, it should output a fake transcript of a denying conversation between
the signer and V “proving” that the signature is a forgery. If the simulator is only
given m as input, it should produce a forged signature F a k e (m) . The denial oracle
should flip a fair coin to decide whether to

1 give the denial simulator m and a valid signature Sign(m), and output Sign(m)
and the fake transcript produced by the denial simulator, or

2 give the denial simulator just the message m, and output the forgery Fake(m)
produced by the denial simulator, along with a random valid transcript of an
execution of the denial protocol for Falce(m) with the true prover and v.

194

The distinguisher would be similar to that in definition 3.3, except that the oracle
used would be the denial oracle.

All of the signature schemes we present in this paper are, in fact, symmetric
undeniable signature schemes, since all of our protocols are zero-knowledge. Since
these protocols are zero-knowledge, to show that the schemes are undeniable, it is
only necessary to prove that there is a signature simulator S1 which can produce false
signatures F a k e (m) that are indistinguishable from real signatures Sign(m) . To see
this, let 5’2 be the simulator guaranteed by the fact that the verifvinrc protkxol is zero-
knowledge. Thus & produces valid looking transcripts when given ‘-n. .c‘ign(m)) as
input. But it must also do so when given (r n , F a k e (m) j as input r incc otherwise we
would have a contradiction with the property of S1. Thus running Sl i t n t i then running
$2 on the output of 5’1 will produce the simulator requireu by i l r i i r i i t iu r i 3.1. It is
also clear from the zero-knowledge property that enterinr inr o veriiving or denying
protocols concerning other messages or signatures will not help r,iie (iistinguisher.

Note that if the verifying and denying protocols are zeru-RlioWlt~tl~r‘, then protocol
transcripts will not help an enemy either to forge a signature 011 tiny xwsaqe for which
it has not already seen a signature or to produce a string for which I ~ i v ki<ner is unable
to either verify or deny that the string is signature.

It appears, at first glance, as if the above definition of undeniai)i!i:y requires that
the verifying protocol be zero-knowledge. In fact, this does no6 s e I n to be the case.
The difference is that we &ow the signature simulator to create its own forgery, so it
is conceivable that, although it can produce transcripts wnen ir. creates the forgery, it
might be unable to produce good transcripts when it is just given a valid signature.

3.2 Existence of convertible undeniable signature schemes
In this section, we will discuss which assumptions are sufficient for the construction
of schemes of the type in which we are interested. If one makes the assumption
that a secure digital signature scheme exists, then we will see that it is quite easy to
design a convertible undeniable signature scheme. Thus, by the Tesult of [RomSO], it
is sufficient to assume the existence of a one-way function,

By a “secure digital signature scheme” we mean one which is “not existentially
forgeable under an adaptive chosen plaintext attack”, i.e. even if an enemy can get
signatures on messages of his choice, he cannot sign any message that has not been
signed by the signer (see [GMR88]).

Theorem 3.5
There exists a secure selectively convertible undeniable signature scheme if and only
if there exists a secure digital signature scheme.

Proof sketch
First, we remark that if a convertible undeniable signature scheme exists, then we
trivially have an ordinary signature scheme by releasing KsZ immediately.

Conversely, to set up a digital signature scheme, there must be a polynomial time
probabilistic algorithm which on input a random string T , produces a pair (P , S) ,

195

where P is a public key, and S is the matching secret key. It is intuitively obvious
that the mapping from T to P must be a one-way function if the scheme is secure.
A formal proof can be derived by using the scheme to build a secure identification
protocol and using the result of [IL89 .

Thus the existence of a secure digital signature scheme implies the existence of
a one-way function, which by [GL89 and ILL891 in turn implies the existence of
pseudorandom generators, and hence 3, ‘GGM841 the existence of a pseudorandom
function family. This is a parameterized family of functions {fx}, where the param-
eter h’ can be thought of as a key. To c. polyccnially bounded enemy who does not
know the key, images f K (z) appear t o be totallv random values with no correlation
to x, even if the enemy gets to choose z.

In addition to pseudorandom :unctions. we w d also need bit commitments. A
bit commitment scheme may be thought of as a function BC that takes as input the
bit string to be committed to, B , and some random input R. From this, one can
compute the commitment B C (B , R) . O.1::en only the commitment, it is “hard” to
guess B better than at random, but it is also .‘hard” for the committer to change his
mind, 1.e. find R, R‘, B # B‘, such that B C (B , R) = BC(B’, R‘). Given R, however,
the commitment can be opened, i.e. B can be computed.

This description is actually a simplification - some commitment schemes require
interaction - and commitments of the form just described require the existence of 1-1
one-way functions. We will assume first that bit commitments have this simple form,
and describe later how to get rid of the 1-1 assumption.

Let P , S be a user’s public and secret key for the signature scheme we are given
and let S (M) denote the signature of .M using the secret key, S. We establish the
undeniable system as follows: the user’s public key is Kp = (P ,BC(K,R)) , where
K is a key for the pseudorandom function family. The first private key is K s ~ = s,
and the second is Ks2 = R. A signature on message M has the following form:

The protocols for verifying and denying signatures can be constructed from a
circuit that works as follows (see figure 1): Using R, it wiU open the commitment
to K , from which it computes f x (M) . With this value, it opens the commitment to
S(M), and finally it checks this signature on M using the public key P. The circuit
gives three bits b l , b2, b3 as output. They are defined to be 1, if the opening of the
two commitments and the signature check, respectively, was successful.

By the general protocols of [BCC88] [IY88], the signer can now convince anyone
of the value of any boolean function of bl,b2,b3 in zero-knowledge, in particular
without revealing R. If he wants to verify a signature, he convinces the verifier that
b l A b2 A b3 = 1, if he wants to deny a signature, he convinces the verifier that
b l A ((-b2) V (7b3)) = 1.

The scheme is secure against forgery because, since the signer chooses R indepen-
dently of S, any forgery of the undeniable signatures could be used to forge signatures
in the original signature scheme.

The scheme is undeniable because the signature simulator need only make a bit
commitment to a random string of the correct length. If the bit commitment scheme
and the pseudorandom function are secure, it should be impossible to distinguish

s ign (M) = B C (S (M) , f K (M)) .

196

I & t
I I 1 I Ope”

b2 *
I b3

Figure 1: Circuit for ve-g or denying signatures.

between this and a valid signature. The existence of this signature simulator, together
with the fact that the protocols are zero-knowledge, is sufficient to prove that the
scheme is undeniable.

The scheme is convertible, since the release of R enables the computation of K,
and therefore all commitments to signatures can be opened. It is also selectively
convertible, since for a signed message M, one can release ~ K (M) . This allows com-
putation of S (M) from 5ign(M), but by the properties of pseudorandom functions it
does not help in computing any other function values.

Finally we address the problem of basing the scheme on any one-way function.
By the result of Nmr, [NaoSO], one can build bit commitments from any one-way
function, but this requires interaction: the verifier sends a random string Rv, and the
signer/prover responds with the commitment. The randomness of Rv is necessary to
ensure that the prover is actually committed, but it does not affect the secrecy of the
bits committed to. We will w e this scheme for the commitment to K ; for this com-
mitment, Rv can be supplied by a trusted key-center, which will usually have to exist
to guarantee the authenticity of the public keys. But any mutually trusted source of
random bits (such as a multiparty coin-flipping protocol) would suffice here. Once
K is committed to, we do not need Nmr’s scheme any more. For the commitments
to signatures, we can use the “hard-core” bits of the one-way function (see [GLBS]),
because the random input is now determined by K.

The conditions needed for the construction of an undeniable signature scheme
are no weaker than the necessary conditions for the construction of a convertible

1 97

undeniable signature scheme aa shown in the following corollary.

Corollary 3.6
There exists a secure undeniable signature system if and only if there exists a one-way
function.

Proof sketch
If undeniable signatures exist, one can prove the existence of a one-way function in
the same way as in the proof of theorem of theorem 3.5.

The converse follows from the previous theorem and the result of [RomSO] that
secure digital signatures exist if one-way functions exist.
Independently, this corollary has earlier been proven by Micali ([MicSO]).

4 A Practical Solution
In this section we show how the El Gamal signature scheme [EG85] can be changed
into a convertible undeniable signature scheme.

First some notation. Let G be a group and let g be an element in this group.
By <g> we denote the subgroup of G generated by g, and by (HI the order of the
subgroup H (Igl = I<g>l). We use DL(h,g) as shorthand for the discrete logarithm
of h with respect to g. Thus pL(ha) = h.

Let p be a prime such that it is hard to compute discrete logarithms in 23; and
let q be a large prime divisor of p - 1 such that everybody knows q. In the following
alI computations are in Z; unless otherwise specified.

Let a be a generator of the subgroup of Zi of order q. The private key in the El
Gamal signature scheme is a number z between 1 and g and the public key is y = a=.
The signature on a message m (1 5 m < q) is a pair (r , a) satisfying

a" = y'r'.

This signature is constructed by choosing k E [l, q - 11 and computing r and 8 by

r = ak

and
8 = L-l (rn - Z F) mod q.

4.1 The Scheme
Using the El Gamal signature scheme, we can construct an undeniable signature
scheme as follows. As before let a generate a subgroup of 23; of prime order q. The
private keys are

and the public key is

Ksl = z a d Ksz = Z, 1 < Z , Z < q

K p = (a,y,u), where y = a2 and u = a'.

198

When the signer makes public Kp = (a, y, u), the receiver, which could be a key center
or a user, should verify that a4 = yQ = plq = 1 and that none of the components of
Kp is the identity. By the properties of Zi, this proves that a, y and u generate the
same group.

The signature on the message m ie eign(m) = (at ,r ,5), where (r , s) is the El
Gamal signature on a*ttrn mod q (in this product at is considered to be a represen-
tation of an element in Zq).

In the El Gamal scheme, it i B possible for a forger to construct a signature (r', 8')

on a message m'. It is very unlikely that m' is meaningful, but this attack implies
that the El Gamal scheme must be used together with a hash function. The new
scheme also requires a hash function, but we will not mention it when describing the
scheme.

The triple (T, r , s) is a legal signature on a message m, if and only if

(TTm)' = y'r'

(whenever T is in the exponent, it is considered to be an element of Zq). Throughout
this section we will use v to denote y'r' and w to denote TTm. Thus verifying a
signature (T, T , 8) on rn is equivalent to deciding if DL(v, w) equals DL(u, a).

The signer can prove that (T, r, 8) is a legal signature on the message m as follows:
(S is the signer and V , the verifier)

PROTOCOL VERIFY SIGNATURE
1. S and V compute w = TTm and v = yrr'.
2. S proves that DL(v ,w) = DL(u, a) using the protocol for simultaneous discrete

3. V accepts the signature if and only if it accepts the proof.
logarithm shown in figure 2 (see also [ChaSO]).

P V
Choose a, b E B

ch Compute ch = waab
\

Choose t E Z
hi = ch * at
ha = hf (h1,hZ)

~

t Verify that ch = w4ab

Verify that
hl = w=a*t
hz = v%*~

Figure 2: Proof that DL(v,w) equals DL(u,a). The prover knows z = DL(u,a).

199

Lemma 4.1
If (T,T! 3) is a legal signature on m, the following hold

1. The verifier always accepts.

2. PROTOCOL VERIFY SIGNATURE is zero-knowledge.

If (T , T , 8) is a false signature, the verifier accepts with negligible probability (in the
length of 4) .

Proof
It is sufficient to prove that the protocol in figure 2 is a zero-knowledge proof system
with perfect completeness and negligible probability of the verifier accepting a false
claim.

If v = w", the verifier will always accept.

Now assume that w" # v.
If w # 1, w generates <a>. For each value of a E (0 , . . . , q - I}, there is exactly one
value of b giving the same challenge. Thus ch contains no information about a. Now
assume that the prover can find a -air i h l , h2) and tl and tz so that

hl = W a l C L h T t l - - waiabl+tz

D L (u , u) = (a1 - a2)-l((b2 - b,) + (t z - t l)) mod q

= D L (w , a)

and therefore DL(v ,w) = D L (u , a) , which is a contradiction. Hence S has probabil-
ity at most l / q of finding a pair (hl, h,) that V will accept.

The protocol is zero-knowledge, because for any verifier V', it can be simulated as
follows

1. Get a challenge, ch, from V' .
2. Choose e and compute hi = a' and h', = u'.

3. Get (a ,b) from the verifier.
If ch # wad, stop; and otherwise goto 4.

4. Rewind V' to after the challenge is sent.
Choose t and compute hl = w"cz~+~ and hz = waub+.

5. Get (u', b') from the verifier.
If ch = wa'ab', send t to the verifier; and otherwise goto 4.

This simulation works because

200

The verifier cannot find two different pairs (al,il) and (a2, b,) resulting in the
same challenge without finding the discrete logarithm of w with respect to a.

0 The first pair (h i , h i) has the same distribution as a pair (a, ha) from the honest
prover.

If (T, r, 8) is a false signature, the simulation still works and it is impossible to tell
that it is a simulation with a false signature unless one can distinguish legal signatures
from invalid signatures. This property ensures that a transcript from an execution of
PROTOCOL VERIFY SIGNATURE cannot be used as a proof of the validity of a
signature.

Before presenting the protocol for denying false signatures, we consider the general
problem of proving that DL(w, w) # DL(u, a). Knowing J = DL(u, a), a polynomial
time prover can demonstrate that these logarithms are different as shown in figure
3. In this protocol, BC(7,R) denotes a bit commitment to the bit 7 using random
input R. The blob is opened by revealing R.

Repeat k times:

P

If aL = b, set 7 = 0
else 7 = 1
Let g = BC(7,R)

If (a ,b) = (a",~')
or (.,a) = (we,vL),

an8 = R
Otherwise a m = stop

V
Choose e E 23 s.t. 1 5 e 5 q -
Choose p E (0 , l)
Compute a = ae, b = uc if p =
and a = we, b = we i fp = 1 W)

9 .
e

ans
If ans = stop, stop.
Otherwise verify that
BC(P, ans) = g

1

D

Figure 3: Proof that DL(zc,a) # DL(w,w). The prover knows z = DL(u,a).

Lemma 4.2
If DL(u, w) # DL(u,a) mod q, the verifier will accept with probability 1.
If DL(u, w) = DL(u, a) mod q, the verifier will accept with probability 2-k.
If the blobs are perfect, the protocol is perfect wro-knowledge even when the k rounds
are run in parallel.

201

Proof
In the case where DL(v, w) # DL(u, a) , the prover will always find 7 = p. If p = 0,

a' = cycz = 21' = b

and thus 7 = 0. If /3 = 1 and aL = b, we have

Since e is relatively prime to q, this implies that wL = v and thus DL(u,w) = z =
DL(u, a). A contradiction.

If DL(u,a) = DL(v ,w) , the pair (a , b) contains no Shannon information about 0, be-
cause w generates <a>. Therefore, the prover can do no better than trying to guess p.

If the blobs are perfect, the protocol can be simulated using the same technique
as in the proof of lemma 4.1. Therefore it is perfect sero-knowledge in this case. In
addition, one can use the techniques of [GMWSG] (graph non-isomorphism) to show
that the protocol is also perfect zero-knowledge when the k rounds are run in parallel.

If the blobs are not perfect in the sense that encryptions of 0 are only computa,
tionally indistinguishable from blobs containing 1, a proof such as that in [BDLP89]
shows that the protocol is computational zero-knowledge (also when run in parallel).

The above protocol is quite straightforward. An alternate protocol is given in
[ChaSO]. Chaum's protocol is more efficient in terms of the number of bits exchanged
(or the number of rounds if the protocol is executed sequentially), but there is a trade-
off requiring more computation on the part of the signer. In order to save a factor of
O (t) bits, the signer creates a table of 2t powers of a specific element, and sorts the
table. Extra computation would usually be mu& less expensive than communicating
extra bits, so Chaum's protocol can be a big improvement over the one presented
here.

With the proof system from figure 3, it is pretty straightforward to construct

PROTOCOL DENY SIGNATURE
1. S and V both compute w = TTm and v = Y'T'.

2 . S proves that DL(u,a) # DL(v ,w) using the protocol in figure 3.
3. S accepts the denial if and only if it accepts the proof.

Lemma 4.3
If (T, t , 8) is a false signature on m, the verifier wil l always accept the denial.
If (T, T , 8) is a legal signature on m, the verifier will reject the denial with high prob-
ability no matter what the signer does.
PROTOCOL DENY SIGNATURE is perfect or computational sero-knowledge de-
pending on whether or not perfect blobs are used.

202

Proof
Follows from lemma 4.2.

4.2 Conversion of all signatures
As mentioned in the introduction, an undeniable signature is converted to an ordinary
signature by releasing K.Q. Knowing Ksz = L and K P , everybody can verify a
signature (T , r , s) on the message m by computing (TTm\z and veriipriq that it equals
y r P . Thus when z is released, all previous and future signatures arc ruuivaient to El
Gamal signatures. Since anyone knowing z could have played the role or̂ the prover
in the previous executions of the protocols for verifying znct u e n j i r x ,ignatures, the
transcripts of these executions cannot help a forger iser iiiw tlLr -uusection about
security) after 3 is released.

4.3 Selective conversion
Knowing t such that T = at , anyone can check that (T , r ,3 J :b <t \innature on m by
verifying that

T = at and utTm = yrr6.

Therefore, a single signature can be converted to an ordinary digital signature by
releasing t. This method of converting signatures requires that the signer remembers
the t used to construct the signature on m. This is most conveniently done by choosing
a key k to a pseudorandom function f k (see [GGM84]) and then computing t as
f k (m) . The properties of families of pseudorandom functions guarantee that, given
polynomially many pairs (mi,fk(m,)), it is infeasible to find fk(7n) for a message
m # m,. Therefore, conversion of any polynomial number of signatures cannot affect
the undeniability of other signatures.

4.4 Security
We will begin by discussing the possibility of creating false signatures. Since the
verify and deny protocols are zero-knowledge, the strongest attack in this context is
the one in which the enemy can ask for signatures on messages of his choice, and later
tries to “sign” a different message. For our scheme, this means that the enemy can
get triples of the form (T , F , $) , such that

T T z m = y f F ,

where m is chosen by the enemy, and T is chosen by the signer. In the following, we
make the worst case assumption that the enemy knows t , the discrete log of T, and Z.
This means that the enemy gets El Gamal signatures on numbers of the form Ttmz.

The only known consequence for the El Gamal scheme under this attack is that the
enemy can construct new “signed” messages from the ones he is given (see [EG85]),
but these new messages result from applying a hard-to-invert transformation to the

203

known messages, and therefore they cannot be controlled e a ~ i l y . ~ In the El Gamal
scheme, as in ours, this problem is solved by applying a one-way hash function to the
messages before signing.

Now suppose that the enemy is somehow able to create a signature (T , T , s) in our
scheme on a message m. There are two cases:

1. If he also knows t , such that T = a:, he has created an El Gamal signature on
A tmr. So either he has iouna a completely new way to break the El Gamal
system, or he has found a Tvay to write the result of the hard-to-invert transfor-
mation mentioned above ;q the form T t m z . We conjecture that this is a hard
problem: m is in fact shorthand for a one-way hashed image of the actual mes-
sage. the mapping j (t) = att can reasonably be assumed to be one-way, and z
is a constant. Thus none of the factors in (T t)mz can be easily controlled by
the enemy.

2. The only remaining possibility is that the enemy can find values satisfying
(TT)mz = yrra wzthout knowing the discrete log of T . This problem could only
be easier than case 1 if T is compuzed in some clever way from signatures the
enemy got earlier from the s i g e r . 2iscussed above, these are equivalent to
El Gamal signatures on messages of a special form. But these messages cannot
be controlled by the enemy, since they all involve a factor of the form tat, where
t is chosen independently by the signer. Hence it is reasonable to claim that
these signed messages will be of no more use to the enemy than the ones he can
construct himself from scratch. Under this assumption the enemy might as well
choose T's for which he knows the discrete log, and hence we are back in case 1.

We now turn to the problem of verifying signatures without the aid of the signer.
Again, since the verify and deny protocols are zero-knowledge, we can simply assume
that the enemy is given some number of signatures he knows are valid, and is trying
to guess whether a given triple (T , r , s) matches a message m, i.e. whether these
values satisfy the usual equation TTmz = yPra. The natural way to verify an equation
like this is to compute each side and compare. But if the enemy can compute the
left side, he can also compute at' = (TTmz)(Tm)-'. This computation of at' from a',
which is known from the public key, and T = at is the Diffie-Heban key exchange
problem, which we assume is intractable.

When a number of valid signatures (T,,r*,s,) are known to the enemy, we have
a situation where at*',t,,a2 is known for a number of independently chosen t , ' ~ (we
make the worst case assumption that the signer releases t, for each i). The enemy
is trying to guess the value of at' for a t independent of a l l t,'s. For each i, the
values mentioned so far could easily be generated with the same distribution by the
enemy himself. The only additional information he has is that each at*" can be
expressed in a special form, namely as (yr*~:*)(T*m*)-l. Since this expression involves
the independently chosen T,'s, we conjecture that this extra information does not help
the enemy.

T

$It is also possible to construct "signed" - but still hard to control - messages from scratch. They
have the form m = crBycBC-', where B, C can be arbitrary integers. The construction that uses
already signed messages is similar, but more complicated,

204

The definition of undeniability in section 3.1 calls for a signature simulator. AS a
consequence of the above discussion, we conjecture that the signature simulator need
only output three random numbers for the triple (T , r , $) .

4.5 Generalizations
This method of constructing undeniable signatures can be used in any group. HOW-
ever, if the group in question (<a>) is not of prime order, 3ne i l d b L O apply the more
general protocoi presented in [CEvdG88] for proving Lc;caity Lrtween logarithms.
The reason for this is that the proof of lemma 4.1 iocs :at m r i (,f w (which the
signer cLooses) generates a small subgroup.

5 Conclusion
We have introduced the concept of convertible undeniable ~ i ~ n a t : i r r ~ s n N hich release
of a single bit string by the signer turns all of his signature>. L t 3 , -, ’+ere originally
undeniable signatures, into ordinary digital signatures. The r u i . t i ” + a Nf bnch schemes
is implied by the existence of digital signature schemes which t > Y : > t , f and zly if a
one-way function exists. We have presented a very efficient seit’cr vr ly C G ~ Jertible
undeniable signature scheme.

Acknowledgement
The authors are thankful to Whitfield Diffie for suggestins a problem which motivated
the idea of converting undeniable signatures to ordinary digital signatures.

References
[BCCSS! Gilles Brassard, David Chaum, and Claude Crepeau. Minimum disclo-

sure proofs of knowledge. Journal of Computer and System Sczences,
37:156-189, 1988.

[BDLP89] Jargen Brandt, Ivan Damgird, Peter Landrock, and Torben Pedersen.
Zero-knowledge authentication scheme with secret key exchange. Sub-
mitted to Journal of Cryptology, 1989.

[CEvdG88] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An im-
proved protocol for demonstrating possession of discrete logarithms and
some generalizations. In Advances xn Cryptology - proceedings of EURO-
CRYPT 87, Lecture Notes in Computer Science. Sp: .nger-Verlag, 1988.

David Chaum. Zero-knowledge undeniable signatures. To appear in the
proceedings of EUROCRYPT’SO, 1990.

[ChaSO]

205

[CvASO]

[EG85]

[GGM84]

[GL89]

[GMR88]

[GMW86]

[IL89]

[ILL891

:IY88]

[MicSO]

[N a0901

[RornSO]

David Chaum and Hans van Antwerpen. Undeniable signatures. In Ad-
vances in Cryptology - proceedings of CRYPTO 89, Lecture Notes in
Computer Science. Springer Verlag, 1990.

Taher El Gamal. A public key cryptosystem and a signatures scheme
based on discrete logarithms. In Advances in Cryptology - proceedings of
CRYPTO 84, Lecture Xotes in Computer Science. Springer-Verlag, 1985.

Oded Goldreich, Shafi Goldwasser, and Silvio MiCali. How to construct
random functions. In i'roceedings of the 25th IEEE Symposium on the
Foundations of ComIju.LIr j a e n c e , :3%.
Oded Goldreich and Leoniu A. Levin. A hard-core predicate for all one-
way functions. In Proceedings of the 2lst Annual ACM Symposium on
the Theory of Computing, 1989.

S. Goldwasser, S. Micali, and R. L. Kvest, A digital signature scheme
secure against adaptive chosen message attack. SIAM Journal on Com-
puting, 17(2):281 - 308, April 1988.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validit,y and T methodology of cryptographic protocol
design. In Proceedings of the 27th IEEE Symposium on the Foundations
of Computer Science, pages 174-187, 1986.

Russel Impagliazzo and Michael Luby. One-way functions are essential
for complexity based cryptography. In Proceedings of the 28th IEEE
Symposium on the Foundations of Computer Science, 1989.

Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random
generation from one-way functions. In Proceedings of the 21st Annual
ACM Symposium on the Theory of Computing, 1989.

Russel Impagliazzo and Moti Yung. Direct minimum-knowledge compu-
tations. In Advances in Cryptology - proceedings of CRYPT0 87, Lecture
Notes in Computer Science, pages 40-51. Springer-Verlag, 1988.

S. Micali, August 1990. Personal communication.

hloni Naor. Bit commitment using randomness. In Advances in Cwp-
tology - proceedings of CRYPTO 89, Lecture Notes in Computer Science,
pages 128 -136, 1990.

John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proceedings of the 22nd Annual ACM Symposium on the
Theory of Computing, 1990.

	Convertible Undeniable Signatures
	Introduction
	Related Work
	Theoretical Results
	A definition of undeniability
	Existence of convertible undeniable signature schemes

	A Practical Solution
	The Scheme
	Conversion of all signatures
	Selective conversion
	Security
	Generalizations

	Conclusion
	Acknowledgement
	References

