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Abstract: 
A new protocol is presented that allows A to convince B that she knows a solution to the 
Discrete Log Problem-i.e. that she knows an x such that dc E /3 (mod N )  holds- 
without revealing anydung about x to B. Protocols are given both for N prime and for N 
composite. 

show possession of: 
- 

We also give protocols for extensions of the Discrete Log problem allowing A to 

multiple discrete logarithms to the same base at the same time, i.e. knowing 

several discrete logarithms to different bases at the same time, i.e. knowing 
XI ,  . . . ,XK such that the product a;’a;’ . . . a? ~ 8 ;  
a discrete logarithm that is the simultaneous solution of several different instances, 
i.e. knowing x such that a t  z /31, . . . , a% E P K .  
We can prove that the sequential versions of these protocols do not reveal any 

“knowledge” about the discrete logarithm(s) in a well-defined sense, provided that A 
knows (a multiple of) the order of a. 

- x 1, . . . , XK such that a”’ = /31 , . . . , = P K ;  
- 

- 

1. Introduction 

Consider the following problem: 
Alice (party A )  knows a solution to the Discrete Log @L) problem: for particular 
a, /3 and N ,  she knows the exponent x such that dc -/3 (mod N )  holds. 
a c e  wants to convince Bob (party B) that she knows x. 
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Alice is not willing to reveal the value of x. 
Bob accepts an exponentially small chance that Alice is cheating, i.e. that she 
pretends to know an x but in fact does not. More precisely, the probability that 
Alice succeeds in cheating without being detected by Bob, is 2 - T ,  where T is 
proportional to the time and space required. 

This paper presents a protocol which solves this problem, both for the cases that N is a 
prime and that N = P 1 P z ,  where P I  and P2 are prime numbers of roughly the same 
size. In the second case, it is assumed that A knows the factorization of N .  When A does 
not know this factorization, however, our protocol is stdl of interest, since given a and N 
she can choose x E { 1, . . . , N - I} at random and then compute f i  simply by 
exponentiation (or a t h d  party could supply A with x and 8). It is assumed that B has 
only polynomial (in log N> computational power, whereas no restrictions are imposed on 
A’s computational resources. No probabilistic polynomial time algorithm is known for 
finding x given a, fi  and N ,  if N is a prime or a composite that is difficult to factor. 

In [CEGP86] protocols were presented that solve the same problem. Compared to 
those protocols, the basic protocol presented here is perhaps easier to understand, to use, 
and to generalize. The existence of a protocol with the same functionality is implied by 
general results of [BrCr86], [Ch86] and [GMW86]. However, these protocols are not very 
useful in practice. In [Ch87] efficient protocols that solve this problem are needed; this 
was the major motivation for our research. 

We also present protocols for proving possession of a solution to some 
generalizations of the Discrete Log problem: 
(1) Multiple Discrete Log (MDL): 

A shows to B that, given a and P I ,  . . . , O K ,  she knows x 1 ,  . . . , x ~  such that 
ax’ = PI,  . . . ,axK = O K .  This protocol is more efficient than applying the basic 
DL-protocol for the pairs (x 1, P I ) ,  . . . , ( x ~ ,  P K )  whde it gives B the same 
probability of catching a cheating A. When a thud party creates the x,’s at random 
and supplies A with the x,’s and Pi's, this protocol also offers the possibihty to use 
DL as the basis for an authentication scheme in a way similar to Fiat & Shamir 
[FiSh86], whose scheme is based on the difficulty of factoring. 

A shows to B that. given cq, . . . , a ~  and /3, she knows X I ,  . . . , x ~  such that 
(2) Relaxed Discrete Log (RDL): 

a-;‘a;2 . . . “2 z p .  
(3) Simultaneous Discrete Log (SDL): 

A shows to B that, p e n  a1, . . . , a~ and P I ,  . . . ,/?K, she knows x such that 
a : _ & f o r i = l ,  . . . ,  K. 

The Discrete Log problem is stated above in 2; (the multiplicative group of residue 
classes modulo N of integers coprime with N) with N prime or composite. However, the 
Discrete Log problem can be stated in any finite group: let G be a finite group, <a> the 
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subgroup generated by a E G, and /3 E <a>; then find x such that or’ = /3. The 
protocols presented in this paper are feasible in any group G in which both A and B can 
apply the group operation in an efficient way, e.g. in time polynomial in the logarithm of 
the order of G. (For the RDL-protocol we also have to assume that G is commutative). 
The properties of the DL-protocol over Zk which are proved in this paper (namely that it 
allows A to convince B with high probabikty that she knows the discrete logarithm of /3 
with respect to a without revealing any knowledge about that hscrete logarithm) remain 
true for the DL-protocol over any group G, such that A knows (a positive multiple of) the 
order of a in G and B knows a “good” approximation of (a positive multiple of) the order 
of a, i.e. if m is some multiple of the order of a then B knows an integer m’ such that 

1 m -m’ I G mc, where c is some number with 0 < c < 1. For instance, if G = Zk, then 
B knows the exact order of G if N is a prime, while if N = P 1 P 2  with P 1 and P2 primes 
of order O(N‘), then G has order +(N)  = (P 1 - 1)(P2 - I), B knows N and 

I N -#J((N) I = 0 (N’). The DL-protocol can be used also if B does not know a good 
approximation for (a multiple of) the order of a; however, B may be able to obtain such 
an approximation by examining the messages whch he receives from a while participating 
in the protocol. Further, with a slight modification, the DL-protocol is still feasible if A 
does not know a multiple of the order of a in G, but then the protocol leaks information 
about x .  

Of course, these protocols are of interest only if no efficient algorithm for 
computing the Discrete Log in G exists. Apart from the case G = Z;, with N prime or 
composite, we can take the K-fold direct product of Z i ,  giving rise to the Simultaneous 
Discrete Log protocol, or the set of points of an elliptic curve over GF(P)  for some prime 
P, imposed with the usual group structure. It was argued in [Mi851 that discrete 
logarithms in the group of points of an elliptic curve over GF(P)  might be even harder to 
compute than “o rd inq”  discrete logarithms. 

paper. The meaning of this notation is straightforward: only the next few things might 
need explanation: 

For describing the protocols, we use the same protocol notation throughout the 

T is the security parameter, agreed upon before the protocol starts. Increasing T 
reduces A’s chance of successfully cheating exponentially, but increases the amount 
of communication and computation only linearly. 
In the zeroth step of the protocol, A and B agree on a. j? and N. 
If not indicated otherwise, the expressions appearing in the protocol have to be 
reduced modulo N .  
By a := expression (mod M )  we mean that the expression at the right-hand side 
must be computed and reduced modulo M and that the resulting value is assigned 
to a; if M = N  we omit the suffix “(mod N)”. 
e E R  S indicates that an element e is chosen at random from the set S, i.e. all 
elements of S have an equal probability of being chosen and that the choice is 
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independent of all previous events. 
In some steps of the protocol a party checks if a particular equality holds; this is 
denoted as: check CI + b. If the check fails, cheating is detected and the protocol 
halts. 
Expressions shown on the left or right are known to the corresponding party only, 
and are secret from the other party. 
A party cannot learn anything about the computations that are done by the other 
party, except from the messages which (s)he received from that party. 

- 

- 

- 

2. The basic protocol: Discrete Log 

Instance: 
Solution: 

In order for the protocol to make sense, one has to assume that there are no efficient 
(polynomial in log N time) algorithms to compute discrete logarithms modulo N for N 
prime or composite. It is generally believed, that for large primes N satisfying certain 
weak restrictions, it is infeasible to compute discrete logarithms in 2;. In this paper we 
assume that computing discrete logarithms is also hard when N is a product of two 
primes that is difficult to factor. Our motivation behind thls assumption is that any fast 
method to compute for each pair a E Zb and j3 E <a> an integer x with 
d r/3 (mod N ) ,  enables one to efficiently find the factorization of N with high 
probability. Indeed, choose y at random from Zf, and pick a “probable prime’’ p 
between N and 2N. Compute a := ?p, ,L3 := 9. Then with high probability, p is a prime 
number coprime with H N ) ,  whence /3 E <a>.  Suppose that the discrete log algorithm 
computes an x with /3- d(. Then r 1, hence ypx - I  is a square root of 1. With 
50% chance, this square root is not equal to 1 or - 1 and yields the factorization of N .  It 
is in fact possible to prove the following stronger (and from a cryptographic point of view 
more convincing) statement. Let N be a given product of two large primes and suppose 
that there is a random polynomial time algorithm (i.e. an algorithm whose running time is 
polynomial in the length of the input and which can do unbiased coinflips) with the 
following property: when the algorithm is given the pair a, B as input, where a is 
uniformly distributed on Zf, and p is uniformly distributed on <a>,  then the 
probability that that algorithm outputs an integer x with d 
some polynomial Q. Then there is a random polynomial time algorithm that outputs the 
factorization of N with probability at least !4. We do not work this out here. 

composite, and point out the merences. If N is composite, we assume that A knows its 
factorization. 

N ,  a E z.;, /3 E <a> 
x such that di r/3 (mod N )  

j? is at least 1 / Q (log N )  for 

We develop the protocols simultaneously for both the cases N prime and N 
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Protocol 1: Discrete Log: dc - f i  (mod N )  

A B 

Step 0: a, P ,  N 

r ER { 1, . . * ,”)} 
y :Ed 

< > 
Repeat T times: 

Step 1: Y 
> 

b ER {O, I >  
S e p  2: b 

< 
y : - r  + bx (mod H N ) )  

Step 3: Y > 
check d +y@ 

2.1. Remarks about the underlying mathematical model 

Our purpose is to prove that Protocol 1 (and the other protocols that will be described in 
this paper) have the following properties: 
- correctness: even a cheating party A is unable (or with a very small chance able) to 

send messages to B satisfymg all of B’s checks; 
securivy: B cannot obtain any useful “knowledge” about the discrete logarithm from 
the protocol other than from the initializing information a, f l  and N ,  even if he 
cheats. 

- 

In this subsection we explain more precisely what is meant by “cheating” and what it 
means that no knowledge is revealed. In the remainder of this paper we assume that the 
computational power of B is polynomially bounded in log N .  For the computational 
power of A ,  we do not make any assumption since it does not matter in our arpments 
whether A’s computational power is polynomially bounded or not. 

algorithm, in another way than that described in the protocol. For instance, if A does not 
know the discrete logarithm, then she could try to construct her messages in such a way 
that they s G u  satisfy B’s checks. B cheats if he generates his bits in step 2 using a 
random polynomial time algorithm that does not choose them at random. 

We say that A cheats if she constructs her messages by means of some probabilistic 
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In several papers, e.g. [GMR85], [BKPU], [GMW86], and [CEGP86], it was argued 
that the security of a protocol can be proved by showing the existence of a random 
polynomial time “simulator” that simulates the interaction between A and B using as 
input only what B knows at the beginning of the protocol. For convenience of the reader, 
we explain below the notion of such a simulator, and why its existence suffices. 

the data he obtains during his participation in the protocol do not help him find a 
solution to any equation (*)f(a,rB,N,z)=O in the unknown z. Before the protocol starts, 
B gets a, p and N .  In step 1, B gets y E 2; from A .  In step 2, B generates a bit 6. If B 
cheats, then he generates b in another way than just choosing it at random; he might use 
all messages that he computed or received before (in the first round of the protocol these 
are only N ,  a, fi,  and y)- During the execution of the algorithm that produces b, B might 
obtain intermediate results, some of whch he would like to store for later purposes; let b 
comprise the intermediate results stored by B. Finally, in step 3, B receives an integery 
from A such that d ryp. Thus B gets a tuple (y,b,b,y). After steps 1, 2, and 3 have 
been executed T times, B has obtained a tuple W, = (yl , bl ,b 1 ,y 1, . . . , yr ,  bT,bT,yT) 
containing all data obtained by B during his participation in the protocol. Note that WB 
is stochastic, and that its probability distribution depends on the initializing information 

Informally speaking, we would like to prove that in whatever way B tries to cheat, 

I A  =(a,fi,N,x). 

Suppose that B has a probabilistic algorithm M f  that computes a solution to 
equation (*) with some positive probability. Further, suppose that there is a “simulator” 
S ,  with small (polynomial in logN) running time, which produces a tuple W i  with about 
the same probability distribution as WB, on input 1; =(a,/?,N). This simulator may 
depend on B s  way of cheating. Let M i  be the algorithm that first computes W i  in the 
same way as S, on input I:, and then computes a solution to (*) by applying M f  to 1; 
and W i .  M i  outputs a solution to (*) with about the same probability as MI (since WB 
and W‘B have about the same probability Qstribution) and M i  has about the same 
running time as M p  This shows that the protocol does not reveal any useful knowledge 
to B: algorithm M’ when input the data gathered by B during the performance of the 
protocol does not output a solution to (*) faster or with higher probability than algorithm 
Mi when input the initialization data 1; only. Hence in order for the protocol to be 
secure, it suffices that there is a simulator with small running time for each way of 
cheating by B.  

It is possible to give the notion of a simulator, informally described above, a formal 
meaning similar to [GMRSS], [BKP85] or [CEGP86]. We assume that the reader is 
famihar with the formal definition of a protocol and with the underlying computational 
model, as described in [BKPSS]. We use a slightly different model that is briefly 
described below. 
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We consider cryptographic protocols with two parties, a “prover” A and a “verifier” 
B. Both A and B use probabilistic Turing machines TA and TB, respectively, with a work 
tape, a random tape and a “mailbox”. The machines use the same alphabet 2. Each 
machine can read only from its own work tape, random tape, and mailbox, but it can 
write on its own work tape as well as on the other machine’s mailbox. Each step 
executed by a machine is determined by the machine’s state and the contents of its three 
tapes, and does not depend on the other machine’s state. Whenever a machine has to 
send a message to the other machine, it copies that message from its own work tape to 
the other machine’s mailbox; then the other machine may copy this message from its 
mailbox to its work tape. For convenience we assume that the machines do not run 
simultaneously. Thus after a machine has written a complete message string on the other 
machine’s mailbox, it stops and is reactivated again only after it has received a message 
from the other machine. 

Before the protocol starts, both machines are in a fixed initialization state, and the 
work tapes of these machines are filled with certain initialization data 1:. Further, TA’S 
work tape contains the secret x.  Put IA =(I : ,x) ;  then IA is a string of length I, say, over 
Z. Further, in the beginning both random tapes are filled with an infinite number of 
symbols, each uniformly chosen from 2. At the end of the protocol, both machines are 
supposed to be in an end state. We suppose that the number of steps performed by TB 
between the initialization state and the end state is bounded above by a polynomial in I; 
for our purposes it does not matter whether or not the number of steps executed by TA 
between the initialization state and the end state is polynomially bounded in 1. 

Denote by WB the contents of TB’S work tape in the end state. WB contains all 
data stored by TB while the protocol was running; these data might contain the messages 
sent and received by TB and some final or intermediate results of TB’S computations. 
Because of the use of random tapes, W, is a stochastic variable whose probability 
distribution depends on IA . We assume that for each IA ,  WB assumes its values in some 
enumerable set 0; let PI, denote the probability distribution of WB on a. An A-  
simulator, based on machme TB, is defined as a probabilistic Turing machine which 
produces a tuple @B with almost the same probability distribution as WB (but depending 
only on 1;); more precisely, if PI; denotes the probability distribution of WL then for 
each IA with sufficiently large length I we have 

where C is some absolute constant with C > 1 
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2.2. Correctness and security of Protocol 1 

In this subsection we prove that Protocol 1 is correct and secure. In the theorem below 
we assume that T is polynomially bounded. (By “polynomial” we always mean 
polynomial in log N.)  

Theorem 1 .  
(a) If B does not cheat, and if A does not know the discrete logarithm x, then any cheating 
by A in Protocol 1 is detected by B with probability 2 1 -2-T. 
(b) I f A  does not cheat, then for any random polynomial time machine used by B in Protocol 
I ,  there exists a polynomial time A-simulator, 

proof: 
(a) Correctness: If A does not know x, then each time that step 3 is executed, she is 
unable to send the proper answer to B in at least one of the cases b = 0 or b = 1. Hence, 
in each round of the protocol, she will be caught with probabihty at least ?4. Thus B will 
detect that A does not know x with probability at least 1 - 2-T. 
(b) Security (sketch): Let TB be the random polynomial time machine used by B. 
Suppose for the moment that the number of rounds T is equal to 1. We have 
IA = (a,B,N,x), 1; = (a ,@,N)  and WB = (y,b,b,y) where: y is the message received by B 
in step 1; b is the bit computed by TB in step 2, using y ;  b comprises the intermediate 
steps in the computation of b stored by TB; and y is the integer received by B in step 3, 
satisfying d r y p  (mod N ) .  Then the polynomial time A-simulator is described as 
follows (all expressions have to be reduced modulo N): 

Repeat at most L: =log N/log 2 times: 
(1) choose c at random from (0, I}  
(2) choosey at random from (0, . . . , N -2)  
(3) compute y := d’jP 
(4) compute b E (0, I}  using T5; let b comprise the saved intermediate results 
(5) if b =c then output VB =(y,b,b,y) 

until b =c 
If b f c  in all L executions of steps (1)-(5), then output w‘5 = “badluck” 

Note that this simulator has polynomial running time. 

Suppose first that N is a prime number and consider one execution of steps (1)-(5) 
described above. In t h  execution, y is uniformly distributed over <a>, and y and c 
are mutually independent. Further, in the computation of b, only y is used, hence b is 
also independent of c. Therefore, b = c  with probability !4. Thls implies that the 
probability that b = c in at least one of L executions of steps (1)-(5) is at least 1 - N - l .  

Note that d ry@’. Let !d be the set of values which can be assumed by W i ,  including 
the message “badluck”. It is easy to venfy that for each w E !d with w# “badluck” we 
have 
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PI: ( W i  = w I WiZbadluck) = PI, (WE = w). 

Together with the fact that PI: ( W i  = badluck) G N - this shows that 

s := 2 ~ P ~ " ( w g = w ) - P p I ; ( ~ ~ = w ) /  G 2iv- I .  
c d € Q  

Since the length of I ,  is proportional to logN, this implies part (b) of Theorem 1 if N is a 
prime. 

Now suppose that N = P 1 P2 where P 1 and Pz are primes of order N V 2 .  Then 
N - 1 is not a multiple of the order of a in Z;, hence the number y computed in step 3 is 
not uniformly distributed over <a>.  However, all arguments given above remain valid 
if we consider conditional probabilities given that 0 <y < $(N) - 1. Using that 
PI;($@) G y  < N -2)= O ( N - % ) ,  it follows that S is bounded above by O(N-") .  

If T > 1, the simulator described above has to be repeated T times. This increases 
the running time by a factor T, and S by a factor f T. But since T is bounded above by 
a polynomial in log N ,  this completes the proof of Theorem 1. Cl 

3. Generalization 1 : Multiple Discrete Log 

Instance: 
Solution: 

Protocol 2 Multiple Discrete Log: ax' = 

N ,  a E Zk, 81 , . . . , PK E <a> 
X I ,  . . . ,XK such that a" (mod N ) ,  . . . ,axK = P K  (mod N )  

(mod N ) ,  . . . ,axK = PK (mod N )  

A B 

Step 2.  
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We assume that T and 2K are bounded above by some polynomial in log N .  

Theorem 2 .  
(a) r f  B does not cheat, and i f A  does not know at least one of the discrete logarithms 
x 1,  . . . , X K ,  then any cheating by A in Protocol 2 is detected by B with probability 

(b) If A does not cheat, then for any random polynomial time machine used by B in Protocol 
2, there exists a polynomial time A-simulator. 

Proof: 
(a) Correctness: Consider one round of the protocol, consisting of steps 1, 2, and 3. By 
assumption, A does not know the discrete logarithm of at least one pi (with respect to a). 
Hence for whatever y she computes in step 1, she is not able to compute the discrete 
logarithm of y& . . . & for at least one vector (b l ,  . . . , b ~ )  E (0, Together with 
the lemma below this implies that, in each round, A is caught cheating with probability at 
least %. Hence her cheating is detected by B with probability at least 1 - 2 - T .  

Lemma: S pose that A does not know the discrete logarithm of y($) :EE 
y/3!' * . . / 3 ~  (mod N )  for at least one vector b = ( b i ,  . . . , b ~ )  E (0 ,  l}K. Then she does 
not know the discrete logarithm of y(2) for at least halfthe vectors2E (0, l}K. 

Proof: We proceed by induction on K. For K = 1 the lemma is trivial. Suppose now 
that the lemma is true for K = L - 1, where L 2 2 (induction hypothesis). We shall 
prove the lemma for K = L. We distinguish three cases. In what follows, $always 
denotes a vector (b 1 ,  . . . , b ~ )  E (0, l}L, and yo has the same meaning as above with L 
replacing K. 

In the first case, A knows the discrete logarithms of all the products y($! with 
bL = 0. Thus, she cannot know the discrete logarithm of p ~ .  Hence she cannot form the 
discrete logarithm of any product y(2) with bL = 1. 

In the second case, A knows the discrete logarithm of each product y(2) with 

2 1-2-T. 

x + 

bL = 1. Then, by the same argument as in case 1, it follows that A cannot form the 
discrete logarithm of any product y(2) with bL = 0. 

In the last case, A does not know the discrete logarithm of at least one of the 
products ~(2) with bL = 0 and also not the discrete logarithm of at least one of the 
products y(2) with bL = 1 .  Then by the induction hypothesis, she does not know the 
dmrete logarithm of at least half the products y($ with bL = 0 and also, by the 
induction hypothesis with y / 3 ~  instead of y,  she does not know the discrete logarithm of 
at least half the products y(2) with bL = 1. 
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We conclude that in each of the three cases A cannot know the discrete logarithm of 
at least half the products ~(2). This completes the induction step. 17 

(b) Security. The proof is essentially the same as that of Theorem I, part (b). We only 
describe the A-simulator. B uses machine TB. 

For i = 1 to T: 
repeat at most L‘: =log N/log ( 1 - - 2 - ~ )  times: 

choose3 = (cl,, . . . , c ~ , )  at random from (0, 
choosey, at random from (0, . . . , N -2) 
compute2 :=& / 3 ~ ’ 1 1  . . + /3ib“ 
compute b, E {0, 
compu tabons 
ifT=?then output (yl,b,,x,y,) 

with TB; let b, comprise the intermediate results of TB’S 

untilT=t 

-+ 4 
ifXS.3 in all L‘ iterations, then output “badluck” 

If not at least once “badluck” then output v~ = (yl , bl,b 1 ,y I, . . . , YK, bK,bK,yK) 

Note that the running time of h s  simulator is proportional to T and 2K, but by 
assumption these numbers are bounded above by some polynomial in log N .  17 

Remark 1. It is possible to use Protocol 2 as an interactive “identification scheme,” a 
concept introduced by Fiat and Shamir [FiSh86]. Suppose that not A, but some mutually 
trusted “center” generates the x,’s at random, supplies these to A (but to nobody else) 
and stores the corresponding P2’s in some public directory. Then A can identify herself to 
B by showing that she knows the discrete logarithms of the Bz’s without revealing any 
knowledge about their values, using Protocol 2. Thus, the data obtained from his 
interaction with A will not enable B to identify himself to a third party as A .  The Fiat- 
Shamir scheme uses a public composite number, whose factorization is known only to the 
center. In that scheme, the BZ’s for a user A are squares modulo that composite, 
constructed by the center, and A has to convince B that she possesses square roots of 
these fir’s. Contrary to our scheme used with a prime modulus, in the Fiat-Shamir 
scheme the center must keep some trapdoor information secret (namely the factorization 
of the modulus). On the other hand, Fiat and Shamir argued that there scheme allows the 
center to form the &’s of some user A by applying some public function to A’s name and 
address or the like. Thus, any venfier B can compute the pi's by himself and they do not 
have to be stored in a public file. The function that is used to construct the B,’s should 
be such that only the center, knowing the factorization of the modulus, is able to compute 
a square root of some output of the function. However, it is currently not known how to 
prove that any such public function prevents people from constructing names for which 
they can find corresponding square roots themselves. The scheme of Fiat and Shamir is 
more efficient than ours, because it requires only squaring whereas our scheme requires 
exponentiations of log N-bit numbers. 
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Remark 2. If we assume that not 2K but K is bounded above by a polynomial in log N, 
then the running time of the simulator described above is not polynomial any more since 
it is proportional to 2K. It seem impossible to construct a simulator whose running time 
depends only polynomially on K for each machine used by B, since B might generate its 
bits by some one-way function. However, there does exist a simulator (described below) 
for the machine that chooses the bits to be sent from B to A uniformly from (0, l}. In 
order to prevent B from choosing the bits to be sent to A not uniformly, one could 
modify the protocol so that the bits are chosen not by B alone, but by A and B together, 
using a coin flipping protocol like that in [B182]. The protocol thus modified is called 
"verifier-passive" (cf. [CEGP86]) because B can do nothing but checking that A sends the 
correct answers. The simulator is described below: 

choose3 = @ I , ,  . . . , b ~ , )  at random from (0, 
choosey: at random from (0, . . . , N -2} 
compute y, :=$ & . . . ~2 

For i = 1 to T: 

--* 
Output 6 = (Yl ,z .y 1 ,  . * . , Y T , b T J T )  

4. Generalization 2: Relaxed Discrete Log 

Instance: 
Solution: X I ,  . . . ,  x ~ s u c h t h a t a ? '  - . .a?=_B(modN) 

It is easy to see that if there exists an efficient algorithm which computes a solution to the 
Relaxed Discrete Log problem for each instance, then there is also a fast way to compute 
discrete logarithms for each possible instance: in order to fmd the discrete logarithm of /3 
with respect to a one has merely to solve the Relaxed Discrete Log problem for the 
instance N, a, 1, . . . ,1,@ It is possible to prove the following stronger result. Let N, K 
be given integers such that N is either a prime or the product of two primes and that K is 
bounded above by a polynomial in log N and suppose that there exists a random 
polynomial (in log N> time algorithm with the following property: if al ,  . . . , a ~  and /3 
are given as input to the algorithm, where at,  . . . , CrK are uniformly distributed over 
and /3 is uniformly distributed over <al ,  . . . , a ~ > ,  then that algorithm outputs integers 
x 1, . . . , XK such that a;' . - - a? G p (mod N )  with probability at least 1 / Q (log N) for 
some polynomial Q. Then there is a random polynomial time algorithm that computes 
for each pair a E 2; and _B E <a> with probability 2 'h an integer x such that 
d: s/3 (mod N ) .  This statement is not proved here. 

N ,  a l ,  . . . , C ~ K  E Z;,  p E 2; 
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Protocol 3 Relaxed Discrete Log: a;' . - a 2  =b (mod N) 
A B 

Step 0: aI,a2,-..,aK,b,N 

Step 2: 

yi : r r i  + bx; (mod HN)) for 1 < i < K 

Step 3: y l t . .  . ,yK 

If K and T are bounded above by a polynomial in log N then we have: 

Theorem 3 .  
(a) If B does not cheat and i fA  does not know at least one of x 1, . . . , X K ,  then any cheating 
by A in Protocol 3 is detected by B with probability 2 1 -2-T.  
(b) I fA  does not cheat, then for any random polynomial time machine used by B in Protocol 
3 there exists a poIynomial time A-simulator. 

The proof of this result is essentially the same as that of Theorem 1 and we do not give it 
here. 

5. Generalization 3: Simultaneous Discrete Log 

Instance: 
Solution: 

N ,  al, . . . ,aK, 81, . . . ,BK E 
x such that a'; = 81 (mod N), . . . , aE f BK (mod N) 
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Protocol 4 Simultaneous Discrete Log: a; G f i 1  (mod N ) ,  . . . , a i  = BK (mod N )  
A B 

Step 2: b 
< 

y : ~ r  + bx (mod +(Pi)) 
Step 3: Y 

We assume again that both K and T are bounded above by a polynomial in log N. 

Theorem 4 .  
(a) If B does not cheat and i fA  does not know x, then any cheating by A in Protocol 4 is 
detected by B with probability 2 1 -2 -T .  
(b) I f  A does not cheat then for any random polynomial time machine used by B in Protocol 
4, there exists a poIynomial time A-simulator. 

The proof of this theorem is essentially that of Theorem 1. 

Remark. From an algebraic point of view, this protocol is just Protocol 1 applied to the 
K-fold direct product (Zk f ,  with a = (a , ,  . . . , aK) and B = (pi, . . . , BK) .  

Acknowledgements 

We would like to thank RenC Peralta and Bert den Boer for their valuable suggestions. 



141 

References 

[BKP85] R. Berger, S.Kannan, and R. Peralta, “A Framework for the Study of 
Cryptographic Protocols,” Proc. CRYPTO 85, pp. 87-103 H.C. Williams, 
ed., Lecture Notes in Computer Science 218, Springer Verlag, Berlin etc., 
(1986). 

M. Blum, “Coin Flipping by Telephone,” Proc. IEEE COMPCON, pp. [Bl82] 
133-137, (1982). 

[BrCr86] G. Brassard, and C. Crkpeau, “Zero-Knowledge Simulation of Boolean 
Circuits,” Proc. CRYPTO 86, pp. 223-233, A.M. Odlyzko, ed., Lecture 
Notes in Computer Science 263, Springer Verlag, Berlin etc., (1987). 

D. Chaum, “Demonstrating that a Public Predicate can be Satisfied 
Without Revealing Any Information About How,” Proc. CRYPTO 86, pp. 

[Ch86] 

195- 199. 

[Ch87] D. Chaum, “Blinding for unanticipated signatures,” To appear in proc. 
E UROCRYPT 87. 

[CEGP86] D. C h a w  J.-H. Evertse, J. van de Grad, and R. Peralta, “Demonstrating 
possession of a discrete logarithm without revealing it,” Proc. CRYPTO 86, 
pp. 200-212. 

[Fish861 A. Fiat, and A. Shamir, “How to prove yourself: Practical solutions to 
identification and signature problems,” Proc. CRYPTO 86, pp. 186-194. 

S .  Goldwasser, S.Micali, and C. Rackoff, “The Knowledge Complexity of 
Interactive Roof Systems,” Proc. 17th Annual ACM Symp. on Theory of 
Computing pp. 291-304, (1985). 

0. Goldreich, S .  Micah, and A. Wigderson, “How to Prove all NP- 
statements in Zero-Knowledge, and a Methodology of Cryptographic 
Protocol Design,’’ Proc. CRYPTO 86, pp. 171-185. 

V. Miller, “Elliptic curves and cryptography,” Proc. CRYPTO 85, pp. 417- 
428. 

[GMR85] 

[GMW86] 

[Mi851 


