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Abstmet: A multi-party cryptographic protocol and a proof of its security are presented. The 
protocol is based on RSA using a one-way-function. Its participants are individuals and organi- 
zations, which are not assumed to trust each other. The protocol implements a “credential 
mechanism”, which is used to transfer personal information about individuals from one organiza- 
tion to another, while allowing individuals to retain substantial control over such transfers. 

It is proved that the privacy of individuals is protected in a way that is optimal against 
cooperation of all organizations, even if the organizations have infinite computational resources. 
We introduce a “formal credential mechanism”, based on an “ideal RSA cryptosystem”. It 
allows individuals a chance of successful cheating that is proved to be exponentially s d  in the 
amount of computation required. The new proof techniques used are based on probability theory 
and number theory and may be of more general applicability. 

1 .  INTRODUCTION 

The aim of this paper is to present in a formal way, and to prove the desired properties of, a 
multi-party cryptographic protocol called a “credential mechanism” that was introduced in 
[Ch 851. In h s  section, the protocol is re-introduced and then an overview of the paper is given. 

1 . I .  Credential mechanisms 

A credential mechanism is a cryptographic protocol that provides for transfers of information 
about individuals bemeen organizations. The information about individuals transferred will con- 
sist of credenriak belonging to some fixed set. If individuals identify themselves to each organiza- 

This research was supported in part by the Netherlands Organization for the Advancement of Pure 
Research (Z.W.O.). 

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 ’86, LNCS 263, pp. 118-167, 1987. 
0 Springer-Verlag Berlin Heidelberg 1987 



119 

tion essentially uniquely, such as by their name, date of birth, or some universal identification 
number, then credentials about an individual can be transferred between organizations without 
control by that individual. To give individuals control over such transfers, the credential 
mechanism allows individuals to use different pseudonyms with different organizations. M e r e n t  
individuals use different pseudonyms. Organizations have no more iden-g information about 
individuals than these pseudonyms, and thus, from the point of view of the organizations, creden- 
tials can be linked to pseudonyms rather than to individuals. 

When information about an individual is to be sent from one organization to another, the 
first organization issues a certificate, called a “credential on a pseudonym”, to the individual, 
showing that a particular credential applies to his pseudonym used with that organization: then 
the individual transforms this certificate into “the same credential on a (second) pseudonym” 
used with the second organization; and finally the individual shows this credential on the second 
pseudonym to the second organization. 

The following is a precise description of the properties of the pseudonyms and credentials 
of the credential mechanism: 

Property 1. The set of pseudonyms can be partitioned in two ways: into I-sets each containing 
the pseudonyms used by an individual and into 0-sets each containing the pseudonyms known to 

an organization. 

Property 2. Each I-set and each 0-set have at most one pseudonym in common. 

Property 3. For any individual, it is easy to compute a credential on a pseudonym if some organi- 
zation has issued the same credential on a pseudonym belonging to the same I-set; otherwise 
computing that credential on that pseudonym is infeasible for that individual (unforgeability). 

Property 4. The credential mechanism does not reveal any information to even cooperating 
organizations about how the pseudonyms are partitioned into I-sets (unlinkability). 

By these properties, a credential mechanism guarantees each individual that Merent organ- 
izations (possibly by cooperation with other organizations and some other individuals) can never 
link the information they have about him. For an organization can only link the information 
about that individuai to his pseudonym used with that organization; and by property 4 the 
credential mechanism does not reveal to the organizations which pseudonyms belong to which 
individual. A credential mechanism also protects each organization against individuals trying to 
convince it that certain credentials apply to them while this is in fact not true. This is so since by 
property 3, no individual is able to compute a credential on one of his pseudonyms if he did not 
previously get that credential on one of his other pseudonyms. Property 2 also protects o r g e -  
tions by, for example. preventing a credential issued by one organization on some pseudonym 
from being transformed into a credential on more than one pseudonym used with any particular 
organization. 

To achieve properties 1-3, both pseudonyms and credentials on pseudonyms must be con- 
structed in a special way. The credential mechanism must ensure that individuals construct their 
pseudonyms in this way. But, because of property 4, individuals cannot be required to show 
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organizations how they have constructed their pseudonyms,. Therefore, credential mechanisms 
include a validating part which is a protocol. by which individuals convince the organizations that 
they have constructed their pseudonyms correctly without revealing how they have done so. 

1.2. Overview of the paper 

In $2 we introduce some formalism about protocols and attacks on protocols (these are ways by 
which some of the participants of the protocol, possibly by cooperating, violate the rules of a pro- 
tocol) which will serve as a mathematical framework in which pro-es of the credential 
mechanism can be stated and proved. 

In 93 we describe a credential mechanism based on RSA with a single composite modulus 
N .  The validating part is based on a “one-way” function, and all credentials on pseudonyms are 
RSA-signatures. Since only one modulus is used, and since it is not assumed that all organiza- 
tions trust each other, a special organization participates in the credential mechanism, called a 
“signature authority”, which is the only organization that has to know the factorization of N used 
in making signatures. The signature authority is trusted by the other organizations-but not by 
the individuals-and is willing to provide suitable signatures requested by organizations. The Gg- 
nature authority also participates in the validating part. In $53.1-3.4 an overview of the creden- 
tial mechanism is given which can be read independently of 92. In 53.5 the credential mechan- 
ism is described by meam of the formalism introduced in 92. 

In &I we prove that property 4 (the unlinkability of the pseudonyms) holds for the creden- 
tial mechanism as described in $3.5 in the following respect: all information revealed by the 
credential mechanism about how the pseudonyms are partitioned into I-sets is already revealed 
by the moments that pseudonyms, credentials, etc. are issued by or shown to an organization. It 
is argued that this kind of information is revealed by any credential mechanism, so that our 
credential mechanism offers optimal unlinkability. 

In $5 we introduce the “formal credential mechanism”. This mechanism is equivalent to 
the actual credential mechanism, except that it is based on an ‘‘ideal‘’ M A  cryptosystem and an 
“ideal” one-way function. It is possible to establish a correspondence between messages in “ideal 
RSA” and messages in ‘‘real RSA” by means of a multiplicative homomorphism. Our formal 
credential mechanism is endowed with a computational model which precisely describes which 
“computations” each participant of the credential mechanism can perform. Thus our model of a 
formal credential mechanism can be compared with that used for RSA based ping-pong protocols 
in [EGS 851. 

In 96 we state the main theorem about the formal credential mechanism: that in each possi- 
ble attack on the formal credential mechanism, the probability that individuals will agree with the 
organizations about the use of pseudonyms which do not have properties 1, 2 and 3, has an 
upper bound which is an exponentially decreasing function of the number of computations done 
in the validating part. In §6 we also give an example of an attack by which individuals could try 
to agree with organizations about the use of pseudonyms in the formal credential mechanism 



121 

which do not satisfy properties 1, 2 and 3 mentioned in 91.1. With this attack we show that the 
upper bound given in the theorem cannot essentially be improved. 

In 57, we prove the theorem mentioned in 96. Unlike the ping-pong protocols of [EGS 851, 
our formal credential mechanism models a protocol in which RSA is used with only a single 
modulus, but with different encryption and decryption exponents. Therefore our method of 
proof is entirely Merent  from theirs. 995-7 can be read independently of 54. 

The reason that we prove properties 1, 2 and 3 for the formal credential mechanism instead 
of the actual credential mechanism, is that the following seems likely: for a proper choice of the 
composite modulus and the one-way function, it is computationally infeasible for an individual to 
agree with an organization about the use of a pseudonym, if that individual is not able to agree 
with the organization about the use of the corresponding pseudonym in the formal credential 
mechanism. An investigation of the correctness of this statement is beyond the scope of this 
paper. 

In $8 we mention a few extensions of the credential mechanism. 

2. PROTOCOLS AND ATTACKS 

For the analysis of the credential mechanism provided in this paper, it is necessary to make clear 
what is meant by notions like “protocols” or “attacks on protocols”. In this section we give 
definitions of these notions which are modifications of those of DeMillo, Lynch and Menitt 
[DLM 821. As noted before, this section need not be read before 693.1-3.4 in which the aeden- 
tial mechanism is introduced. 

2.1. Some probability theory 

In the sequel we need some discrete probability theory which is introduced here. 

We fix an enumerable set S={wI ,w2 ,  . . . }. To each w, in 3 we attach a real number 
Pr[wi] in the closed interval [0,1] such that 

m 
Pr[wi] = 1 . 

i = l  

Subsets of D are called events. The probabizity of event &, denoted by P r [ g ] ,  is given by 

2 P r b l .  
oE& 

The conditionalprobabiliy of event &, given event 9, is defined by 
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if Pr[b]#O and is not defined otherwise. When stating results involving conditional probabilities 
we always assume that these are defined, without explicitly mentioning this. If (2 1, . . . , &, are 
events with Pr[& n . . ~ 17 @,]#0, +en we have the elementary equality: 

A stochastic variable can be any function from to any arbitrary set. Obviously, a stochas- 
tic variable can assume only finitely or enumerably many values. For each value x of the sto- 
chastic variable X, we put P r [ X = x  ] = P r [ X - ’ ( x ) ] ,  where X - ’ ( x ) = { u E i l :  X ( w ) = x } .  More 
generally, if X I ,  . . . , X, are stochastic variables with values x 1 ,  . . . , x, ,  respectively, we put 

P ~ [ X , = X ~ ,  . . . ,x ,=x , l  = P r [ x , I ( x , ) n  . . .  nx;’(xt) l .  
If confusion is not likely to arise, we shall abbreviate Pr[XI =x 1, . . . ,XI  = x t ]  by Pr[x  1 ,  . . . , x , ] .  
We say that a stochastic variable X is uniformly distributed over a finite set I’ if 
P r [ X = y ] = ( # r ) - ’  for each y in r, where as usual, # r  denotes the cardinality of r. A sto- 
chastic variable X is said to be independent of the stochastic variables Y 
X J I , .  . . ,yr of X , Y , ,  . . . , Y,, respectively, we have P r [ x y 1 , .  . . , y , ] = P r [ x ] P r l y l , .  . . ,y,l. 

Let X:Q+9LX and Y:s1+9Ly be stochastic variables and let F:%x+EXr be a function. 

. . . , Y, if for all values 

We write Y = F ( X )  if P r [ j w E i l  : Y(o)#F(X(w))}]=O. Obviously, i f P r [ X = x ] # O  then 
Pr[ Y =y 1 X = X I =  1 if y = F ( x )  and 0 otherwise. 

We denote the set-theoretic difference of the sets A and B by A \B. For any set A,  we 
denote by F ( A )  the colleztion of finite subsets of A and by F’(A) the collection of finite ordered 
tuples with entries in A .  Both the empty set and the empty tuple are denoted by 0. 

2.2. Protocols 

Informally speaking, a protocol is a description of a sfochnsticprocess in whichpartic@ants, 
belonging to a finite set of participants P ,  transmit messages between each other which belong to a 
finite or enumerable message space M .  The time in this stochastic process wil l  be an enumerable 
set of moments, T={O, 1,2. . . . }. 

The elements of the set M X P X P are named steps. We shall often denote steps (m, u,#?) by 
m+P : m (“a sends m to ,8”) if afp ,  and a: m (“a generates m”) if  n = P .  

Let X= M X P X P X T. For any subset y of X (including X itself) and subsets A ,  B of P and 
U of T, we put 

y (A,B,  = y n (A4 X A  X B X U) . 

Thus y(A,B,  U) describes a set of steps in which a participant of ‘4 sends a message to a partici- 
pant in B (or a participant in A generates a message if A n B f  0) during U. For convenience 
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we shall often abbreviate {a} by a and P \ { a }  by P a  for a E P ,  while the subsets { t } ,  

t >0, respectively. 
{O,.  . .,t-l},{O, . .  . ,t},and {1,2, - . - } o f  Tareforconveniencewrittenast, ( 1 ,  s r , a n d  \ 

A stochastic subset of X will be a mapping from 52 to the collection of subsets of X. If Y is 
such a stochastic subset, then we define Y(A,B,U) by Y(A,B,U)(w)= Y(w)(A,B,U) for A,B CP 
and UC T. Thus ify is a value of Y,  theny (A$, U) is the corresponding value of Y(A,B, v). 

Definition 1. A protocol 9 is a tuple (P,M, pn:a€P),  where P is the (finite) set of participants 
of 9,  M is the (finite or enumerable) message space of 9’ and pa is the choice for a. 
A choice for a is a collection of functions @,,, : t  >0} such that 

Thus a protocol can be considered as a collection of rules according to which communication 
between participants takes place. The actual communication is described in the execution process: 

Definition 2. The execution process of the protocol 9 =(P ,M,pa  : a E P )  is a stochastic subset 
S = S ?  ofX=MXPXPXTsuchtha t  
(i) for every t ET, the values of S ( P , P , t )  are finite sets; 
(ii) Pr[S(P,P, 0)= 0]=1; 
(iii) for each value s of S and a EP, t E T we have 

P r b ( a , P , t )  Is(a,P, <tXs(P,,P,Wl 
(3) 

=Pr[s (aJ’, t )  I s (sP, < t),s ( P a ,  a, <t)l =p a,t(s (a ,P ,  ( t ) , s  (Pa,a, c t ) , s  (d’, 1)) 

wherepa=@a,t:t>O} is the choice for a. 

Values of the execution process are called executions. If s is an execution and 
(rn,a,B,t)Es(a,B,t) then we say that during execution s, (rn,a,B) is executed by a at moment t, 

and that m is sent by a and received by /3 at moment t if afp and generated by a at moment f if 
a=B. 

Each choicep, = Gqr:t >0} for a can be considered as a stochastic system (for instance, a 
mathematical object like a probabilistic Turing machine or a physical object like a computer net- 
work) which outputs s at moment r with probabilityp,,,(x,y,s) after it has been given inputy and 
after it has given output x before moment t .  The execution process describes the communication 
between these systems. 

(i) states that at each moment, a participant executes only a finite number of steps. (c) 
states that at moment 0, “nothing” has happened. (iii) states that whatever a participant does at 
moment t may depend on all messages which it sent or received before moment t ,  but is not 
influenced by the messages which it did not send or receive. 

It might be possible that for some a E P  and r ET,  S(a,P,t) assumes the empty set. In that 
case a does “nothing” at moment t.  Protocols with a finite running time, t o ,  say, can be 
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considered as protocols for which Pr[S(P,P, ( t  ET:t  >to})= 0]= l .  

Our model dil€ers from that of DeMillo, Lynch and Merritt [DLM 821 in that it satisfies the 
following assumptions: 

0 each message arrives at the same moment that it is sent, and at the same receiver to which 
the sender wanted to send its message; 

participant y can find out no more about the communication between a and B than what 
he learns about this from his communication with a and 8; in other words, the communica- 
tion channel between (L and B does not “leak”; 

0 

0 the sender and receiver know each others identity 

However, situations in which these assumptions are not valid, can be considered in our 
model by adding new participants. For instance, weaknesses in a computer network, causing 
messages to arrive too late or even at the wrong place, or leaking communication channels can be 
described in our model by considering the computer network or the communication channels as 
participants of the protocol. (Partial) sender- or recipient-anonymity can be dealt with in OUT 

model by giving each participant a number of representatives. The representatives communicate 
with each other and h o w  each other’s identities, and each participant communicates with its 
representatives. Apart from its own representatives, no participant has a priori knowledge about 
which representatives belong to which participant, and he might find out something about the 
relationship between the participants and representatives only from the messages which he 
receives during an execution of the protocol. 

From any protocol 9 =(P,M, p,:a€P) it is possible to construct a new one, by dividing 
the participants into pairwise disjoint sets, and considering these sets as participants. Let Q be a 
partition of P, i.e. a collection of pairwise disjoint sets of which the union equals P. Using (1) 
and (3) it is possible to show that for each A in Q and each execution s of 9, 

2.3. Attacks 

In this subsection we consider attacks on protocols. Ifp, = 
two choices for a then pU#p’, means that for at least one t ,  the functions pa,( and P’,,~ are 
different. 

Definition 3. Let 9 =(P,M, p u : a  EP) be a protocol and J a (possibly empty) subset of P. An 
attack by J on 9 is a protocol T’=(P,M,p’,:aEP) such that 

>0} andp’, = >0} are 
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p a # p h  for a E J  , p a = p f a  for aEP\J . 
We say that the participants in J are cheating. 

Thus an attack can be interpreted as a violation of the rules of a protocol by some of the partici- 
pants. 

By considering computer networks or communication channels as participants, it is possible 
to describe attacks such as passive or active eavesdropping, or redirection of messages. By using 
representatives, as introduced in the previous subsection, our model allows attacks to be 
described in which some participant pretends to be somebody else. 

In the security analysis of protocols, it is important to know whether non-cheating partici- 
pants are able to find out i f  other participants are cheating. Below, a precise definition of detec- 
tion of an attack is given. 

Definition 4. Let 9 = ( P , M ,  p , : a E P )  be a protocol, J a subset of P and 9’ an attack by J on 
9. Denote by Sq ,Sy, the execution processes of 9 and 9’, respectively, and let s be an execu- 
tion of 9’. We say that a E P  \J can detect 9’ during s if 

whereas 

One possible way by which a may detect an attack on the protocol 9 is when at some moment t 
he receives messages from a participant /3 which are not allowed for 9. By this we mean that, 
given the communication between a and B before moment t, a received messages from B at 
moment f which he could not have received with positive probability during an execution of 9. 
(This need not imply that B is cheating). We now express this by means of the terminology 
introduced above. Let .Sy denote the execution process of 9, and let s be an execution of (an 
attack on) 9. Thus s(a,B,<t)  and s@,a,<t) describe the commu&cation between a and B 
before moment t ,  during s. Then the messages sent from /3 to a at moment r during execution s 

are allowed for 9 i f  

In the situation that we are dealing with cryptographic protocols, participants often have 
h t e d  computational abilities and therefore limited possibilities to cheat. To incorporate this in 
our model we assume that each participant a of some protocol 9 has a collection of choices em, 
each element of which satisfies (2). Then each attack 9’=(P,M, p ‘ , : a E P )  on 9 must satisfy 
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3. DESCRIPTION OF THE CREDENTIAL MECHANISM 

In $3.1 we explain the main idea behind the credential mechanism. $3.2 contains a more detailed 
overview of the credential mechanism. In $3.3 we give a concise description of the credential 
mechanism by means of a convenient protocol language. This description of the credential 
mechanism wil l  be referred to throughout the paper. $3.4 contains additional comments on the 
credential mechanism. s3.1-3.4 can be read independently of $2. Finally, in $3.5 we describe a 
mathematical model for the credential mechanism by means of the formalism introduced in $2. 
There, all the notions introduced in s3.2-3.4 will be given a precise mathematical meaning. 

I 

3.1. Main idea behind the credential mechanism 

Our credential mechanism is a cryptographic protocol based on RSA used with a single compo- 
site modulus N .  The participants of the credential mechanism are individuals and organizations. 
iV is public, i.e. known to all participants of the credential mechanism; only one special organiza- 
tion in the credential mechanism, the “signature authority” Z, knows how to factor N .  The mes- 
sages transmitted in the credential mechanism belong to Zk, which is the multiplicative group Of 

aU residue classes modulo N containing integers coprime with N .  The order of Zk is as usual 
denoted by H N ) .  Only Z has the ability to compute RSA-signatures on these messages. An 
RSA-signature on message m is a message mc mod N ,  where c is a public integer coprime with 
HN), and C is an integer with c F r l  mod H N ) ,  which is known only to Z. The credentials will 
be public positive integers coprime with H N ) ,  belonging to a finite set C. The product of a l l  ele- 
ments of C is denoted by b. 

- 

Suppose i is an individual participating in the credential mechanism. The pseudonyms used 
by i are formed as follows: first i gets a number u from 2 which i uses as a pseudonym with Z; 
then i generates, for each organization A participating in the credential mechanism, a random 
number rA from 2;. Then i uses as pseudonym with A the number uA rurf;. mod N ,  where b is 
the product of all credentials. For the organizations, these pseudonyms just look like random 
numbers in Zk; this prevents different organizations from linking the pseudonyms used by the 
same individual. 

A credential c E C, applying to individual i, can be sent from organization A to organiza- 
tion B as follows: 

A asks z to compute dA r u f t  mod N for h. After A receives this he sends dA to i. i 
checks i f  A sent him the correct message by venfymg that 4 z u A  mod N .  

i computes dB& by first dividing dA by r:Ic and then multiplying with &‘. (Note 
that the exponent b / c is the product of all credentials except c so that i can compute it). 

i sends dB to B and B verifies that &B-uB mod N .  

Individuals should never be able to show a credential to some organization if they did not 

0 
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get this credential before from another organization. Individuals might be able to compute 
credentials themselves, without having gotten them from some organization, if they have the free- 
dom to construct their pseudonyms uA in another way than described above. If for instance i 
can use ug& mod N as a pseudonym with B instead of uri mod N, then he can compute each 
credential u$ mod N by himself. Moreover, if two individuals i and i f  use pseudonyms UB and 
u ~ ’ ~ ~ B r b B  mod N with B, where r is chosen by both individuals, then maybe i needs to get a 
credential from some other organization before he can compute one for B; but once i is able to 
show a credential to B, i f  is able to show the same credential to B, without having gotten it from 
some other organization. 

To avoid the problems just mentioned, we extended our credential mechanism with a vali- 
dating part, which forces individuals to form their pseudon+ uA in the way described above, 
but does not require individuals to reveal more about how they have actually constructed their 
pseudonyms. In the validating part for pseudonym uA, i sends messages to Z, which are con- 
structed in a special way, by means of a one-way function. These messages are candidates for 
building blocks of a validator, to be issued by Z to i later on. Then Z selects at random half of 
these candidates, and asks i to show how he actually constructed these. If i constructed these 
properly, then Z computes the validator from the candidates of which i did not reveal the con- 
struction, and submits this validator to i. Because there is an RSA-signature in the validator, i 
could not have computed the validator by himself. Later, i transforms this validator into another 
validator which is shown to A together with pseudonym UA . There must be a special relationship 
between UA and this validator which is checked by A.  If this relationship holds, A accepts UA as 
a pseudonym. Z also checks this relationship, to make sure that later he does not issue creden- 

tials on improperly formed pseudonyms. 

3.2. Overview of the credential mechanism 

In the actual credential mechanism, it does not make a difference whether some individual com- 
municates with some organization, thereby identifying himself with a pseudonym, or some 
representative of this individual communicates with that organization and identifies himself with 
that pseudonym. In our description of the credential mechanism, we shall assume that communi- 
cation takes place between organizations and representatives. Thus the participants in the 
credential mechanism will be the signature authority Z ,  the organizations A I ,  . . . , A L ,  the indivi- 
duals i 1,  . . . , i~ and the individuals’ representatives, where no representative represents more 
than one individual and each indvidual has different representatives for the communication with 
different organizations. 

Initialization. The notation introduced here will be used throughout the remainder of this 
paper and will not be re-introduced later. Before the actual credential mechanism starts, 2 

chooses two large primes P and Q and keeps these secret. Then Z makes the modulus N = P Q  
public. After that, 2 makes public: 
a set C = { C ~ ,  . . . , CK} of positive integers, to be used as credentials; 
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pairs of primes (p 1 ,q 1). . . . , @L.qL) used to make validators for A 1 ,  . . . ,AL,  respectively; 
an even integer n >4, the security parameter, which determines the amount of work done in the 
validating part; 
a positive integer a, elements m 1,  . . . , m, of z$ and a “one-way function” f : Z k + E k ,  which are 
all used in the validating part. 

It is assumed that the numbers +(PI), u, p 1 ,  . . . , p ~ ,  q 1, . . . , qL,c 1, . . . , CK are pairwise 
coprime, and that p 1, . . . ,pL ,q 1, . . . , qL are larger than ‘hn. (This last condition is just a techn- 
ical one, needed later in some of our arguments). We put b, =pjc 1 . . . CK for j = 1, . . . , L. We 
shall not specify f. We assume that f is “close to random” and has at least the properties that 
anybody can easily compute it and that it is not a homomorphism and not invertible by any par- 
ticipant of the credential mechanism (possibly apart from z). *(One could take 
f ( x ) = x n ’  +xT’ + 1 mod N for certain prime numbers T I  and TZ or another polynomial which is 
not a power of a linear polynomial. But we do not know if such a choice for f is good enough). 
AU computations, relations etc. in the credential mechanism will be modulo N ,  and therefore the 
suffix “mod hr’ will be omitted. If b is a public number, used for exponentiation in RSA then 
the corresponding secret exponent, known only to 2, is denoted by b. Thus b b r l  mod H N ) .  In 
general, all expressions in exponents without a bar will be integers computable by all participants 
of the credential mechanism, while only Z is able to compute exponents with a bar. 

Below we give in overview of the whole credential mechanism. It is built up from subproto- 
coLr (i.e. collections of steps to be executed in the credential mechanism) which are indicated by 
roman digits and the individual or representative, organization and credential involved. We 
describe that part of the credential mechanism in which ik is involved. The representative of i k  

communicating with A j  is denoted by g,. 

In most of the subprotocols, some participant checks if the messages which it received 
satisfy some special relationship. The check results in ‘true’ if this relationship holds, and ‘false’ 
otherwise. No steps in a subprotocol are executed after one of its checks has resulted in ‘false’. 

O&): ik gets a pseudonym from Z .  
ik asks Z for a pseudonym. 
Z checks if a pseudonym can be issued to ik, and if this is the case, chooses Uk from Zk and 

sends this as a pseudonym to i k .  

Z(ik,A,): ik gets a validator from Z which will be shown to A, in a modified form. Put 

ik asks Z for a validator for A, and Z decides if this can be issued. 
0 ik chooses numbers q,s[ (I = 1, . . . , n) at random from Z i .  Then he computes ;I: =rn/rr and 
akl:  = f (Ukr(  )dq for I = I ,  . . , , n and sends all ak/ to Z. (A uniform choice from Z; can be 
obtained by choosing an integer uniformly from { 1, . . . , N } ,  by doing another choice in the 
unlikely event that this integer has a factor in common with N and so on, until an integer 
coprime with N is chosen). 

The numbers a k /  are the candidates for the building blocks of the validator which will be issued 

p =P,,q=q,,b=bj. 

,b 
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by Z later on. These candidates are constructed in a special way but by the uniform choice of 
the numbers q,sl they look just like random elements of Zk. This special way of construction 
should give the organizations sufficient security; while the random choice of the numbers q,sl is 
meant for giving individuals the desired privacy. 

0 Z selects at random a subset 5 of { 1, . . . ,n} of cardinality kn and asks ik to show, for each 1 
in s , numbers q and sl such that Ukl =f(uk(mlfp)b)bf4. Then z checks if akl and the numbers 
rl,q sent to it by ik satisfy these relationships for i E S . 

If these relationships are satisfied, then 2 computes the validator 

vkj : = & I {  naa)P;j 
I e5 

2 
and sends this to i k .  

validator has the proper form by venfymg that 
denotes a secret exponent corresponding top2). .Then ik checks if this 

I 

ZZ(gi,Aj). 1k forms a pseudonym ug, and a validator GgJ from uk and Vk,, and lets his representa- 
tiveg, show these toA,. Let againp=pJ,q=qJ,b=b,, and puttl=1. 

Let u be a permutation of { 1, . . . ,n} with u({%n + 1, . . . , n))=S,  where 5 is the set chosen 

Put rg, : =r‘ l .  ik computes ugJ : =uri, , which will be the pseudonym used with A,, and 
by z 1l1 I ( i k , A , ) .  k t  T’[=;,,.((n, S’I=SNI)  for 1 = I ,  . . . ,En.  

HN 

I =2 
wg, = n u k r ! : .  Then ik sends ugl and wg, to gJ, g, sends these to AJ and finally, A, sends these 

numbers to Z .  
0 A, and 2 check if ug, #ug; and ug, wg, #u,; we; for each pair ug;, w,; sent to A, by some other 
representative g’,. 

Each individual ik forms a validator to be shown to AJ from the validator issued by Z in 
Z(zk ,A, ) .  The last check prevents ditferent individuals from computing their validators for A, 
from the same validator issued by Z. 

ik computes tl: = r‘lrgT for I = 2 ,  . . . , %n, and 

and sends these numbers to gj. Then gJ shows these numbers to A, and A, sends them to Z .  

A straightforward computation shows that 

Both AJ and Z check if  
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If these conditions hold then both A, and Z accept ug, . 

III(g,,A,,c): A, issues credential c on the pseudonym of representative g,. 

gj asks A, for credential c on his pseudonym at the request of ik. Then A] checks if this can be 
issued and, after having positively decided on this, asks Z to compute credential c on the-pseu- 
donym ug, of gl. 

Z checks if ug, has been shown with a proper validator, and if so, computes dg, : =uil and sends 
this credential to A,. A, issues this credential to g, and gj gives it to i k .  

- 

- b , / c  - L- ik checks if 4, = ug, , and computes dk : = dg, rgl - t l k .  

N(&.Ah,C): gh shows credential C on his pseudonym With Ah. 
/ k / c  - - 

0 ik computes dgh =dk 
checks if =ugh. 

- uih and sends this to g h .  gh shows this credential to A h ,  and Ah 

3.3. Concise description of the credential mechanism. 

We shall use the notation of 53.2. Further notation introduced here will be used later without 
reintroduction. For reference purposes we describe the credential mechanism by means of a 
“protocol language” introduced below. 

Protocol language. 
a-rs : m 

Q sends message m to 

Q sends m to B, j3 sends m to y . . . to K 

a chooses an element y from the set r in some unspecified way 

a chooses y d o r m l y  from the set r and independently of all other steps executed at 
the same moment or before 

a+/3+y+ * . . +ti : m 

a : chooses y from r 

a : chooses y uniformly from r 

a : computes rn:=(expression) 

a + j 3 3 .  . . +K : checks P 
a: computes the expression and assigns the value to m 

a computes the value of the predicate P, which is either ‘true’ or ‘false’. Then this value 
is sent from a to 8, from 
ues; otherwise the subprotocol stops immediately after the check. 

to . . . to K. If this value is ‘true’ the subprotocol contin- 

Description of the credential mechanism. We shall describe that part of the credential 
mechanism in which individual ik is involved. The representative of ik communicating with A, is 
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denoted by g,, for j= I ,  . . . ,L .  First we describe the initialization, before the actual credential 
mechanism starts. 

Initialization 
Z : chooses large primes P,Q 

computes N :  = PQ 
chooses even integer n >4 and one-way function f 
chooses m 1 ,  . . . , m, from 2; 

chooses positive integers c 1, . . . , cK, u, p 1, . . . ,pL,  q . . . , qL, 
such that all these numbers are pairwise coprime and coprime with 
a n d p i , .  . . ,pL. 41, . . . , q L  are primes larger than Lhn 

- - - -  - 
computes c i ,  . . . , c ~ , a , p l , .  . . &,ijl,. . . , q ~  

Z makes public: N,n$ m 1, . . . , m,, c 1, . . . , CK,  a, p I ,  . . . , p ~ , q  1 ,  . . . , qL 

O(ik). Z gives pseudonym to ik. 

1. i k i Z  : asks for pseudonym 
2. Z+ik : checks if pseudonym can be given 
3. z : Chooses Uk from zk 
4. Z j i k  uk 

I(i&. Z gives ik validator for AI. 
Put p =Pj,q=q,,b = b,. 

1. ik+Z : asks for validator for AJ 
2. Z-ik : checks if a validator for Aj can be issued 
3. ik : chooses (q,q : I = 1, . , . ,n) uniformly from ( Z k p  
4. ik : computes ;l:=mlry, ak/:=f (Ukr1)sfq ( l= l ,  . . . , n )  

5. ik+Z : ak/ ( I  = 1, . . . , n )  
6. Z : chooses 5 uniformlyfrom {S c(1,. . . ,n) : # S = l h n }  
7. 24,  : 5 
8. ik+Z : r1,q (ZES) 
9. Z+ik : checks au = f (uk(mlrp)b)sfq for I ES  

-6 

II(gi.Aj)- gJ shows pseudonym with validator to A,. 
Let rl,sr be the numbers chosen in step 3 of I(ik,A,), let 5 the set chosen by Z in step 6, and let 
u be the permutation of (1, . . . , n) defined by 0(1)<0(2)< . . . <u(%n), u(Hn + 1)< - . . <u(n) 
andu(('/in+l,. . . , n } ) = S .  Putp=p,,q=q,,b=b, and t l= l .  

Hn ,b 
1. ik : computes rg,:=;.( , , ,  U ~ : = U ~ T ~ , ,  6 wg,:=nukrd0 

I =? 
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ZZI(gj,Aj,c). A, issues credential c to g;. 
Let rgl,ugl have the same meaning as in step 1 of ZI@,,Aj). 

1. ik+gj+Aj : asks For credential c 
2. A;+g;+ik : checks if c can be issued 

4. Z+Aj : checks if it has received proper validator for ug, 

5. Z : computes dgl : =uil 

3. A;+Z : ugI 

- 

6. Z+Aj+gj-+lk : dgJ 
7. ik+g;+A;+Z : Checks GI =ug 

- b  c a ik : computes dk:=rgl 1' dG < = u 9  

3.4. Comments 

This subsection contains some remarks and assumptions on the credential mechanism. 

Outside world. Participants of the credential mechanism may not only communicate with 
each other, mostly over some computer network, but also with the "outside world". For inStan% 
events happening in the outside world may influence an organization's decision to kspe a fleden- 
ti& or an individual's decision to ask for or show a credential. For that reason, the outside 
world should be considered as another participant of the credential mechanism. 

Time order of the steps. The credential mechanism is built up from the subprotmls in the 
set IT consisting of 
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0 ( i k h  I (ik ,Aj (gj  ,A; 1, @; ,Aj, C ), I “kj ,A;, C ) 
for all ingividuals ik, representatives gj and organizations A,. In each subprotocol 9 of n, cer- 
tain relationships between messages are checked, resulting in the value ‘true’ if the relationship 
holds and ‘false’ otherwise. We agreed that no steps in 9 are executed after one of the checks in 
9 resulted in ‘false’. We say that a subprotocol in II has be&proper!y executed if it has been 
executed such that none of its checks resulted in ‘false’. We require that subprotocols are exe- 
cuted without any interruption. We allow that different subprotocols in IT run in parallel or in 
overlapping time intervals, however with the following obvious 

Consistency restrictioo: 

0 

0 

steps in I( ik ,A,)  are executed only after U(ik) has been properly executed; 

if g, is the representative of ik communicating with Aj ,  then steps in II(g,,AJ) are executed 
only after I( ik ,A,)  has been properly executed; 

steps in IIIkJ,A,,c) are executed only after II(gj,A,) has been properly executed; 

steps in IT/(gh,Ah,c) are executed only after ZII(g,,A,,c) has been properly executed for 
some j in { 1, ~ . . , L }  and some gi representing the same individual as g h .  

There might be more restrictions on the time order in which the steps in the credential 

0 

mechanism are executed, for instance: 

pseudonyms, validators or credentials must be issued before some “deadline”; 

the time passing between the moment that an individual or its representative gets a pseu- 
donym, validator or credential from an organization, and the moment that another 
representative of this individual shows this to another organization, depends statistically on 
events in the outside world; 

the decision of an organization about issuing a particular credential on a pseudonym 
depends on whether other credentials have been shown on that pseudonym, on the number 
of times that that credential has been issued before on other pseudonyms, or on messages 
received from the outside world. 

Simple credential mechanism. A possible way to state properties of the credential mechan- 
ism, is to compare it with the following simple credential mechanism. 

When some organization agrees to give a credential c to an individual, that organization 
just gives the individual‘s representative the number c, without any cryptographic protection. 
Later on, another representative of that individual shows this number c to another organization. 
The validating part of this credential mechanism runs as follows: individual ik asks 
sion to communicate with organization AJ. If Z gives this permission then he sends a special 
validator vJ to ik which is independent of ik. Later, i k  initiates the conversation with AJ by let- 
ting his representative show vJ to AJ. 

for peITIiS- 

Obviously, this simple credential mechanism does not give the organizations any security; 
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individuals are always able to show a validator or credential to some organization by means Of 

their representatives without having got this from another organization. This simple Credential 
mechanism would work well if none of the individuals would ever cheat; compared with other 
possible credential mechanisms, it gives individuals maximal possibilities of getting validators or 
credentials and maximal freedom in choosing the moments at which they show these to some 
organization. 

Main condition: except for cheating, our credential mechanism should give individuals as 
many abilities as the simple credential mechanism described above, more precisely: 

the credential mechanism must offer each participant the same freedom in communicating with 
the outside world, and each non-cheating individual the same possibilities of getting validators or 
credentials and the same freedom in deciding when to ask for or show these to some organiza- 
tion, as the simple credential mechanism described above. 

checks. The checks done in the credential mechanism are divided in two parts: the decision 
checks in which organizations check if they can issue a pseudonym. validator or credential to 
some individual or representative; and the other, so-called securz? checks by which p a r t i c i p ~ ~ t s  
may detect attacks. In any execution of the credential mechanism. no step in a subprotocol 9 in 
n is executed after some check in 9’ has resulted in ‘false’; we allow however that the execution 
of a subprotocol is repeated after a security check by an individuai has resulted in ‘false’. If no 
participant cheats, then all security checks will give the value ‘true’: only the checks in steps 3 of 
the sets II(g,,A,) may give the value ‘false’ with very small probability. 

We now briefly discuss the checks in steps 3 of the sets II(g,,A,). These checks di€fer from 
the other security checks in that they compare messages which were sent by different representa- 
tives to an organization. Without these checks, two individuals, i l  and i2, say, can successfully 
conspire in the following way against A, : i follows the validating part and lets his representative 
giJ showul,wl toA, i n s t e p 2 , a n d v l , t l z , .  . . ,tl,nhn instep50fII(glJ ,AJ) ,where 

(b  =b,, p =p j  and q =q, have the same meaning as in $3.3). il chooses u 2  = u t t f m  for some m 
in 11, .  . . ,%n), where t l I : = l r  and computes W ~ : = U I W I  / u 2 ,  v : := f !m/P2v l  and 
t 2 / : = t l . q ) / t l m  for 1=2,  . . . ,En, where Tis a permutation of { I . .  . . , % n }  with ~ ( m ) = 1 .  
Then i2 lets his representative g2, show u2,  w 2 ,  v 2  and f 2 /  ( 1 ~ 2 ,  . . . , ‘hn) to A, in II(g2j.A;). 
A11 security checks by A, in IZ(gz,,Aj) are satisfied, except that u l w l  = u z w 2 ,  hence without the 
check in step 3, A, would have accepted both u1 and 112. It is easy to check that credentials 
issued on u 1 can be easily transformed into credentials on ul and vice-versa. 

Suppose that A, received u I and w1 from representative gl, in step 2 of fZ(gl,,A,). Prob- 
lems might arise when there is a dispute in which A, claims that it received numbers u2 and w 2  

from another representative g 2 ,  such that u1 = u 2  or u 1 w 1 = u2w1 and refuses to accept pseu- 
donym u 1 ,  and that g 1, does not accept this refusal. Below we describe a method to deal with 
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such a dispute with the help of a mutually trusted referee, in such a way that gl, does not have 
to reveal which individual it represents. We assume that !4n, where n is the security parameter, is 
coprime with all the primesp,,q, ahd credentials c introduced in 53.2. 

For i = 1,2, let ui and wi be the numbers sent to A, in step 2, vj=ig, ,  the validator com- 
puted in step 4 and T, the tuple ( r j 2 ,  . . . ,ti,+,) sent to Aj in step 5 ,  where all steps belong to 
II@,A,). In the case of a dispute as described above, each gii sends q, w,, vi and ~i to the 
referee. First the referee computes the tuples ui =(ui,uit$ : 2 =2, . . . , Ihn) for i = 1,2. Note that 
none of these tuples needs contain distinct entries. Then the referee checks, if indeed u 1 =u2 or 
U I W I = U ~ W ~  and 

If (7) holds and the two tuples u1 and u2 can be made equal by reordering, then the referee 
concludes that the individual represented by gl, conspired mth somebody else and decides that 
A] does not have to accept u1 as a pseudonym. His motivation for this conclusion is the follow- 
ing: since for any integer d with gcd(d,+(N))= 1 the mapping x w x d  is bijective, the tuple 8 1  can 
be considered as a random tuple in (Zk)"". The number of tuples ul in (Zk)"" which contain 
u1 and whose other 'hn - 1 entries have product w 1  is equal to +(LV)Gi"-2. If gl,, or the indivi- 
dual which it represents, did not reveal the set u1 before showing it to the referee, then somebody 
else could have generated 242 and 72 such that u1 equals 0 2  after reordering, only by correctly 
guessing a tuple which is apart from its order equal to uI ,  while bowing no more than u 1 and 
w1. But the chance of such a correct guess is at most ( I h n ) ! ~ + ( @ - " " .  In practical situations 
when N has about 200 digits, this probability can be neglected. 

If 01 can not be made equal to u2 by reordering, then the referee accuses signature author- 
ity Z of _cheating. From u 1w 1 =u2w2 it follows that by cooperauon, gl, and g2, can compute 
(u I u l  )'. (Of course, g 1, and g2, can compute this also if u = u z ) .  The referee assumes that 
participants in the credential mechanism other than 2 have only a neghgibly small chance of 
learning at the same time u l , r E Z k  and uZ:=ulrb, tuples T,=( f ,Z , .  . . , t , ,~,+~) of Zh and valida- 
tors v,  satisfying (7) for i = 1,2, such that no reordering of u1 is equal to u2. Theorem 3 in $7.2 
can be considered as a motivation for this. 

3.5. A mathematical model for the credential mechanism 

In this subsection we shall describe the credential mechanism by means of the terminology intro- 
duced in $2. TO this end, we must interpret each step described in 53.3 as a step in an execution 
of a protocol in the sense of 52, and give the notions introduced in $3.4 a precise mean@. 

After having introduced some necessary notation, we consider the checks, introduce the 
"shadow", which is an extraction of the credential mechanism that contains in essence the same 
information as the simple credential mechanism of $3.4, consider the steps executed by the parti- 
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cipants of the credential mechanism in more detail, give a proper formulation of the “main condi- 
tion” by using the shadow, and finally consider the time order in which the steps are executed. 

In our model for the credential mechanism we assume that all communication channels are 
secure against passive and active eavesdropping, and that messages are received at the same 
moment that they are sent and at the right place. The only essential assumptions in our analysis 
of the credential mechanism are that the communication channels between individuals and their 
representatives, and between the organizations and 2 are secure. The analysis of the credential 
mechanism in this paper still holds true if the other assumptions are removed, however this 
would require uninteresting technical complications in our arguments. 

Notation. We shall use the same notation as in $2 and $3.1-3.4. In particular, 
T = {0,1,2, . . . } denotes the time, and N the composite modulus of the underlying RSA-system. 
We suppose that the set consisting of N ,  n, 5 rn 1 ,  . . . , m,, c 1,  . . . , cK, a, p 1,  . . . , p ~ ,  
q 1, . . . , qr. is fixed and known to each participant before the credential mechanism starts. A g h  
we assume that H N ) ,  c 1, . . . , cK, a, p 1, . . . , qL are pairwise coprime and that p 1, . . . , qr. are 
primes larger than En. Let EI be the set of subprotocols introduced in 53.4 and N = { 1,2, . . . }. 
Put (cf. $2.1) 

The set of participants P of the credential mechanism consists of the outside world E, the 
signature authority 2, the organizations A j  (’j = 1, . . . , L) , the individuals ik (k  = 1, . . . , R) ,  a 
set of LR representatives, and the allocation center C which is responsible for allocating the 
representatives to the individuals. We shall discuss later in more detail how this allocation takes 
place. The message space M is equal to M‘ u M” where M’=II XM X Y and M” is an 
unspecified set, containing the messages which E and C may send or receive. 

Let 9 €n. For convenience we denote the set (9) X N  X Y X P E  X P E  X T by 9. Thus n 
defines a partition of M’ X PE X PE X T in subprotocols. A step of the form ((?,r,y),a,,f9 
corresponds to the step of 9 in the description of $3.3 which has number r at the left mar@, 
and in whichy is sent from a to /3 (or generated by a if a=/3). Messages in which an individual 
or representative asks for a pseudonym, validator or credential, aill be indicated by triples 
(C?,r, 0) ,  for appropriate 9 and r. Any step of the form ((9.r,,v).a./3) is indicated as “step r of 
9”. 

Checks. Apart from the security and decision checks described in $3.4, the participants 
must do some other checks. We assume that at each moment that an individual, 2 or an organi- 
zation receives messages from another participant, it checks if these messages are allowed for the 
credential mechanism (cf. $2.3, (5)). (For instance, Z checks that the tuple which it receives in 
step 4 of ( I ( i k , A j )  has exactly 2n entries, and each individual or organization checks if the time 
order in which he receives certain messages from some participant is not in conflict with the con- 
sistency restriction). These obvious additional checks are also called security checks. Messages 
which are allowed for the credential mechanism will satisfy all security checks with only the fol- 
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I o h g  exception: that two individuals, with representatives gl, and gZj for Aj ,  respectively, do 
not cheat and by accident generate their numbers such that the checks in step 3 of If (glj,A,) and 
ZI(g*,,A,), result in ‘false’. 

As before, we assume that a step in 9 is executed only if no previously executed step in 9 
contained a check which resulted in ‘false’ but allow that the execution of 9 is repeated after a 
security check of the individual involved in 9 resulted in ‘false’. 

Shadow. The mapping u on the message space M is defined as follows: 

if m EM” 
u(m) = m or m =(T,r,y)EM’ withy €(true, false} , 

u(m)=(Y,r) if m =(9,r,y)e&f’ withy@{true, false} . 

u is extended to X = M  X P X P X T by putting 

4m,a98, t )  = (4m>,a,B.t)  . 

For u C X  we put o(u)={u(s):s € a } .  We denote a(X) by Z, and for each subset q of E we write 
v(A,B,U) = v n ( u ( M X A X B X U ) f o r A , B ~ P a n d  U c T .  IfSistheexecutionof (anattack 
on) the credential mechanism then we put Z=u(S) and for any subsets A and B of P and U of T 
we abbreviate u(S(A,B, U)) by Z(A,B, U). Z is called the shadow of the (attack on) the credential 
mechanism. 

The shadow is essentially equal to the simple credential mechanism of 93.4, except that it 
contains values of security checks. But if no participant cheats then these security checks will all 
result in ‘true’ with very high probability. 

Individuals, organizations and Z. If a value of Z is given. (i.e. the moments at which the 
participants execute their messages), then the steps executed by individuals and organizations are 
completely determined, except for the choices of the pseudonym uk in step 1 of O(i,) (which are 
not specified), and the uniform choices of the tuples (r,,sl : i = 1. . . . , n) in step 3 of f &A,) and 
the sets 5 generated in step 6 of I(ik,A,) for 1 9 k G R  and l<j<L. When saying that at 
moment t ,  a makes a uniform choice from a finite set r, we inplicitly assume that this choice is 
independent of the other steps executed at or before moment r in which a generated, Sent or 
received a message. We now explain this with the terminoloR of 92. 

Let r be a finite subset of Y. By “a chooses y uniformly from r at moment f in step r of 
9 ” the following is meant: 
let T(9,r ,a , t )  denote the choice of a at moment t i n  step r of ‘3, and let W ( Y , r , a , f )  denote the 
collection of other steps in which a generated, sent or received a message at or before moment t ,  
i.e. 

W(T,r ,a , t )  = S ( a , P . S t )  u S(Pa,a,Gt)\({(9,r)} xr (3 , r ,a , r )X( (a ,a , t ) } ) .  

Then for each y in r, and each value w of W(T,r ,a , f )  we have 
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1 P r [ r ( q , r , a , t ) = y  I (T,r,a,a,t)  EZ(a,a,t) , W(9,r,a,t)=w] = - # r .  
The following two cases are of interest to us: 

T = { S c ( l , .  . . , n } : * : ~ = ~ n } ,  #r=(,,&), a = Z ,  q=I(ik,A,),r=6. 

For the sake of completeness we mention that (8) also holds in case of an attack on the 
credential mechanism, in which a does not cheat but may receive messages from cheating partici- 
pants. 

Representatives, allocation center and outside world. We assume that none of the represen- 
tatives, the allocation center C or the outside world E will ever cheat. In no execution of (an 
attack on) the credential mechanism E sends messages to or receives messages from C or the 
representatives. 

During executions of (attacks on) the credential mechanism, E and C send only messages 
from M” and “neglect” messages outside M ,  which they may have received during an execution 
of some attack on the credential mechanism, i.e. the messages they generate or send, are statisti- 

cally independent of received messages which do not belong to M”. Moreover, the allocation 
center sends messages only to individuals and representatives and negects messages received 
from other participants than those. 

The representatives belong to a fixed set of cardinality LR. We explain how the allocation 
of representatives to individuals takes place. At moment 1, C allocates a representative to each 
pair (ik,AJ), in such a way that different representatives are allocated to different pairs. It  is 
assumed that each allocation has the same probability (LR)!-’. At moment 2, C informs each 
individual, which representatives are allocated to him for communication with the organizations 
A 1, . . . , AL, respectively, and informs each representative to which individual it has been all& 
cated and for communication with which organization. 

Let g, be the representative of individual ik communica,ting with A,. After gJ has been 
informed that it has been allocated to ik for communication with AJ, its activities during any exe- 
cution of (an attack on) the credential mechanism consist only of the following: if g, receives 
message m at moment t from a participant fik then it sends rn to ik at moment t + 1;  whereas if 
g, receives m from ik at moment t then it sends m to A, at moment t + 1. 

Representatives and allocation center are merely artificial constructions, meant to make the 
description of the mathematical model somewhat easier, and explain how the credential mechan- 
ism looks like from the point of view of the organizations. In general, they will not be used in 
practical implementations of the credential mechanism. 

Main condition. Z(a,P, t )  describes the communication of participant a with the outside 
world or the allocation center, at moment t, the probability with which a may show pseudonyms, 
validators or credentials at  moment t if a is an individual, or the probability with which a may 
issue a validator or credential at moment t if a is an organization. The conditional probability of 
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X(a,P,t) given S ( a , P , < t )  and S ( P , , a , < t )  describes the freedom of participants to communicate 
with the outside world, the freedom of individuals to decide whether to ask for or show a pseu- 
donym, validator or credential, and the freedom for Z or the orpnizations to issue such a pseu- 
donym, validator or credential, at moment t .  This freedom should be as large as in the simple 
credential mechanism and hence any restrictions on this freedom should be expressible in the 
shadow. Thus the main condition can be stated as follows: 

for each a in P, t in T and execution s of the credential mechanism we have 

where a=+), sec(E,t)= 0 and sec(a,t) is the set of values of security checks by a at moment t 
on messages received from participants other than E if  a f E .  If we assume that all security 
checks result in ‘true’ (which is extremely likely during executions of the credential mechanism if 
no participant cheats), then (9) implies that 2 is an execution process of a protocol in the Sense 
of 92. 

We remark that (9) holds true also for an attack on the credential mechanism in which a 
does not cheat. 

Time order of steps The shadow of the credential mechanism describes the order of the 
moments at which the steps in the credential mechanism can be executed. We require that steps 
from the same subprotocol are executed in the same order as described in 53.3, and at consecu- 
tive moments. The time order at which steps from different subprotocols 9’ are executed is sub- 
ject to the consistency restriction given in 93.4. Other restrictions on the time order of the steps 
(e.g. those given in §3.4), must imply the main condition (9). 

4. UNLINKABILITY 

An equivalent statement of property 4 mentioned in 31.1 says that the credentid mechanism does 
not reveal any information about which representatives represent which individuals. This pro- 
perty can not be proved in this strict sense. Suppose for instance, that 6rst signature authority Z 
gives a validator to individual zk and that later, a representative gJ shows a validator to A,, at a 
moment at which no other validators have been issued or shown. Then Z and A, wil l  find out by 
cooperation, that g, represents ik. Another situation where dormation is revealed about the 
linking between representatives and individuals is the following: suppose that credential c is 
issued only once, on a pseudonym of representative gJ,  say, and shown once on a pseudonym of 
representative gh.  Then by cooperation, the issuing and receiving organization will find out that 
gJ and g h  represent the same individual. We notice that information of the type mentioned above 
will also be revealed if instead of the credential mechanism of 93.5, the simple credential mechan- 
ism described in 93.4 would have been used. Using the model of 53.5 for the credential mechan- 
ism, we shall prove that the credential mechanism is optimal in the following sense: all infurma- 
tion revealed by the credential mechanism about the relationship between individuals and 
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representatives is already revealed by the shadow of the credential mechanism. As mentioned in 
53.5, this shadow is essentially equal to the simple credential mechanism considered in 53.4. 

4.1. Statement of the result 

We shall use the same notation and make the same assumptions as in §52,3. Thus P is a set con- 
sisting of signature authority Z, the organizations A ], . . . , A L .  the individuals i 1, . . . , iR, LR 
representatives, the allocation center C and the outside world E. Let J be a subset of P, consist- 
ingof Z , A , , .  . . ,AL and some of the individuals and l e t Jo={ i l , .  . . ,iR}\J be a set of non- 
cheating individuals. We consider attacks by subsets of J on the credential mechanism. An 
attack on the credential mechanism is called safe for J if it has the following properties (cf. 
@2.3,3.5): 

0 if  the messages received by an organization (or Z) before moment t from a representative (or 
individual) were allowed for the credential mechanism, then at moment t that organization (2) 
sends back messages to that representative (individual) which are also allowed for the credential 
mechanism; 
0 no individual sends messages to other individuals or to other individuals’ representatives; how- 
ever, individuals may communicate over the outside world. 

Loosely speaking, in safe attacks, cheating individuals, organizations and Z try to hide their 
cheating from individuals of which they believe that they do not cheat or from representatives of 
which they believe that they represent a non-cheating individual. An organization can only be 
sure that some representative represents a cheating individual if he receives messages from that 
representative which are not allowed for the credential mechanism. The only property of safe 
attacks which we shall use is, that the messages received by the non-cheating individuals in JO 
from participants other than E will satisfy all security checks by these individuals. This is true 
since in particular the messages received by these individuals’ representatives from the organiza- 
tions are allowed for the credential mechanism. We assume that 2 has infinite computational 
resources, i.e. we make no further restrictions on the choices of Z. 

Before stating Theorem 1, we recall that the allocation center is denoted by C. Thus 
B(C,J0,2) denotes the allocation of representatives at morr.ent 2 to the individuals in JO (cf. 
53.5). We shall abbreviate this by X(C,Jo). Values u(CJo.2) of X(C.J,,,Z) will correspondingly 
be abbreviated by a(C,Jo). We defme 8, as the union of J O  and the set of representatives of J O  
which have communicated with some organization, up to moment t .  Then for each t > 1 there is 
a function 0, such that 0, =B,(S(P,J, g t ) ) ,  since 0, contains exactly those representatives not 
allocated in Z(C,J, 2). S %ill denote the execution process of (an attack on) the credential 
mechanism, I: =o(S) (cf. shadow in 53.4) and Z(A,B,  v) =a(S(A.B, Cr)) for A,B C P and U C T. 

THEOREM 1. Let J be a set consisting of 2, A 1,  . . . , AL and some of the individwk, and 

J O  = { i  1 ,  . . . , iR } 1 J .  Then for each attack on the credential mechanism which is safe for  J and in 
which the individuals in J O  do not cheat, each execution s of this atrack, and ench t > 1 we have 
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As mentioned above, from s(J,P, < t )  and s(P,J, Gr) it is possible to find out which representa- 
tives are allocated to individuals in Jo. Theorem 1 tells us that all additional information 
revealed to J about which representative represents precisely which individual in JO is already 
revealed by the shadow of the credential mechanism. 

Remark 1. In the case, that organizations do not know which individuals are cheating, they can 
try to find this out by statistically analyzing their set of received messages. We can not state an 
analogue of Theorem 1 when the set of individuals in J is not fjxed, since the collection of attacks 
on the credential mechanism is not endowed with a probability measure. 

Remark 2. Suppose that in Theorem 1, J =  ( Z , A  1, . . . , A L }  and J o  consists of all individuals, 
and that up to moment r the following happened: for j = 1, . . . ,L,  all individuals got their vali- 
dators for A, at the same moment, and all representatives showed their validator to A, at the 
same moment; and moreover, no credential was issued or shown. Then 0, =Ot where Or consists 
of all individuals and representatives, and the sets Z(J,O,, < f )  and Z(8,,J, s t )  are independent of 
Z(C,Jo). Hence in this situation, all information revealed to J about Z(C,Jo) is coming from the 
sets Z(J,E, G t )  and Z(E,J, Gt) ,  i.e. from Ss communication with the outside world. 

Remark 3. In the statement of Theorem 1, it is essential to assume that the credentials 
c1, . . . , c ~  and the exponent a and the primespl, . . . , q ~  used in the validating part are all 
coprime with H N ) .  The individuals have the certainty that th is  requirement is satisfied if for 
instance all these numbers are primes larger than EN. Below we describe a protocol, based on 
an injective one-way function h, in which any individual can convince himself with probability at 
least 2 / 3 that some odd exponent d made public by 2 is coprime with H N ) .  That individual 
can reduce 2 ‘ s  chance of successful cheating by repeating this protocol as many times as he 
wants. Let ik be an individual. In step 1 ,  ik chooses a number x uniformly from Zk, and sends 
y : = x d  to z. In step 2, Z computes x’ with dd=y  and sends ho:=h(x ’ )  to ik. In step 3, ik 
checks if h ( x ) = h o .  

If d is coprime with H N ) ,  then the value x’ computed by Z is always equal to x, and hence 
ho is equal to h ( x ) .  Suppose that d is not coprime with H N ) ,  and let d p ,  dQ denote the numbers 
of solutions of xd=l  mod P ,  x d _ l  mod Q, respectively, where P and Q are the prime factors of 
N .  Then there are exactly dpdQ different x’ with xtd=y mod X. 2 knows that ik must have 
chosen x in step 1 as one of the d-th roots of y but he has no information about which root was 
precisely chosen by ik. Hence in step 3 2 can do no better than guessing which root was chosen 
by ik and the chance that he guesses wrong is 1 - ( d p d ~ ) - ’  which is at least 2 / 3. By the injec- 
tivity of h, the chance that ik will receive a value ho different from h ( x )  in step 3 is at least 2 / 3. 
ik might try to cheat by sending 2 a valuey in step 1 of which he does not know the d-th root. 
However, if the one-way function h used in step 3 is ‘‘good enough”, then ik will not be able to 
compute the d-th r w t  of y from h o, 
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4.2. Lemmas 

The idea behind the proof of Theorem 1 is to construct, from the messages sent or received by Z 
and the organizations and from a given allocation of representatives to individuals, a set of tuples 
(r,,sl: 1=1, . . . , n ) ,  chosen by the individuals in step 3 of eachsubprotocol I(ik,A,), and argue 
that the sets of tuples constructed from different allocations have equal probability. In this see- 
tion we state and prove two lemmas needed in the proof. 

Let J consist of Z,A 1, . . . ,AL and some of the individuals, and let J o  ={i  1 ,  . . . , i ~ }  \J. 

We 6x an attack on the credential mechanism which is safe for J and in which the individuals in 
J O  do not cheat, and denote the execution process of this attack by S. Further we put Z=o(S). 
Up to now, by an execution we just meant an arbitrary value of the execution process of the 
attack we are considering, which can be any subset of X = M X P X P X T. In the sequel we shall 
restrict ourselves toproper executions, i.e. executions s with the following properties: 

the set of elements of s belonging to the subprotocols in which individuals in J O  or their 
representatives are involved satisfies the description of these subprotocols in 93.3; in partic- 
ular, in each step 3 of I ( ik ,A j )  with ik E J o  a tuple (rl,s,: I = 1, . . . ,n )E(Zk)2”  is chosen, 
and in each of the subprotocols involving individuals in JO or their representatives, the 
messages are computed as prescribed in 53.3, and the steps are executed in the order 
corresponding with the description of 53.3 and at consecutive moments; 

s satisfies the conditions imposed on the messages generated, sent or received by E, C and 
the representatives as described in 53.5; 

the time order in which the steps in s, involving an individual in J o  or one of his represen- 
tatives, are executed, is subject to the consistency restriction of 53.4. 

In attacks which are safe for J and in which the individuals in J O  do not cheat, executions which 
are not proper have always probability 0. There may be proper executions with probability 0. 

In Lemma 1 below we compute the probability of a proper execution. We put 
J’o =Jo u { E } .  For any proper execution s with ci=o(s), and any subset U of T, we denote by 
K(o(Jo,P,  U)) the number of all steps 3 of Z ( i k , A , )  executed during U, for ik E J o  and 1 S j G L .  
It is clear that this number depends indeed only on u(Jo, P ,  F). 

Lumma 1. For every t >O there are functions A ,  and B, such that for eachproper execution s, 

P r [ S ( P , P ,  <t) l  = o ( N ) - ~ ~ ~ ( ~ ” ~ . ~ ~ ) )  
x M ~ ( J ’ ~ , P ,  W , ~ ( C , J ~ ) , ~ ~ . ~ ( J ,  8, u E, GO) 

x B , ( s U , P ,  e ) , s ( P , J ,  Sf)) , 

where o=u(s) and 8, =Br(s(P,J, Gt ) )  is the valuefir 0,. 

Proof. In the proof of this lemma only, undefined conditional probabilities will be given the 
value 1. We shall prove Lemma 1 by induction on r. We start with f =O. 
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The statement of Lemma 1 trivially holds true for t =O by taking K(a(Jo,P, O)=O and let- 
ting A 0 and BO be functioas identically equal to 1. Suppose that Lanma 1 has been proved for 
moment t - 1 where t >O. (induction hypothesis). We proceed to prove Lemma 1 for moment t .  

Let s be a proper execution. For convenience we put 

Pr( t )=Pr[s (P,P,  Gt)]  , Pr(t  - l )=Pr[s(P,P,  < t ) ]  . 

Let R denote the set of representatives. By (1) (cf. 92.1) we have 

Pr(2) =Pr [s (J’o ,P, S f ) , $  (C,P, ft),s (R,P, G t ) , s  ( J ,  P, G t ) ]  

= P , P 2 P 3 P 4 P r ( t - l ) ,  

where 

PI =Pr[s(J’o,P,t)(s(J’o,P, <t] , s (C,P,  =a),s(R,P, <:t),s(J,P, a)), 
P2 =Pr[s(C,P,t)Is(J’o,P, <t),s(C,P, <t),s(R,P, <‘t),s(J,P, Gt)] , 
P3 =Pr [s (R,P, t )  1s (J’o,P, <t) ,s  (C,P, a ) , s  (R,P,  c t ) , s  (J,P, i t  )I , 
P4 = Pr [s (J,P,t) I s (Po ,P, t r ) , s  (C,P, c t ) , s  (R,P, c t ) , s  ( J J .  ( t  )I . 

Note that (10) also holds true if some of the conditional probabfities on the right-hand side are 
not defined. Moreover, if one of the conditional probabilities in (10) is not defined then one of 
the other factors in the right-hand side of (10) is 0. Therefore, (10) remains true if we replace an 
undefined conditional probability by any value we like. To the defined conditional probabilities 
we may apply (4) (cf. $2.2) with the partition J’o,( C},R and J of P. Thus we obtain 

where 

=Pr[s(J’o,P,t) IS (J ’~ ,P ,  c t ) , s ( P , J ’ o ,  a)] , 

P’2 =Pr  [s (C,P, t )  s (C,P, <t),s(P, C, t r ) ]  , 
P’3 = P r [ s ( R , P , t ) (  s(R,P, <t),s(P,R, <r)] , 

P’4 =Pr  [s (J ,P, t )  I s (J ,P,  < t ) , s  (PJ, c t ) ]  . 

Because of the relationships between messages sent and received by the representatives, which 
hold also for our proper execution s, we have P’3 = 1. Moreover, if f = 1 we have P’z=(LR)!-’, 
since each allocation is equally likely, if t = 2  then P t 2  = 1 since the messages sent by the a l lo~a-  

tion center to the individuals and representatives are determined by the allocation at moment 1, 
and if t >2 then also P’2 = 1, since s(C,P,t)= 0 with probability 1. (Here we used that s 

satisfies the conditions on the messages generated and sent by c). By combining these facts we 
obtain that there is a function C, such that 

P‘2P13P’4=C,(s(J,P, <t),s(P,J, f t ) )  . (12) 

We now consider P’, . Suppose for the moment that I”, is dehed. All elements of 
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s(J‘o,P,r) are of the form x =(m,a,B,t), where ~ E J ’ ~ .  If m EM‘‘ or m =(9,r,y)EEM’ and 
y€{true, false}, then x Ea(J’o,P,t). Otherwise we have m =(9,r,y), where (9,r,a,B) belongs to 
u(J’o,P,t) andy  is either a tuple ( r [ ,q :  I = 1, . . . ,n) chosen in step 3 of some z(ik,A,), or can be 
derived from a tuple previously chosen in step 3 of some I(ik,A,) and from messages previously 
received by Jo, by using the computations in the credential medbanism described in $3.3. It fol- 
lows that S(J’o,P,t) is completely determined by Z(J’o,P,t), B(r),  S(J’o,P, < r )  and 
S(P,J’o, < I ) ,  where B ( t )  is the set of tuples chosen at moment r in step 3 of some I(ik,A,), for 
ik EJo. Let b ( t )  be the value of B ( t )  corresponding to s(J’o,P,t). Then 

where 

P’ll =Pr[b(t)la(J’o,P,t),s(J’o,P,ct),s(P,J’o,ct)l , 
P’lZ =Pr[a(J’o,P,r) 1 s(J’rJ,P,<t),s(P,J’rJ, a)] . 

b ( t )  contains exactly K(o(J’o,P,t)> tuples (r1,sl: I = 1, . . . , n). By assumption, the distributions of 
these tuples are uniform on (ZL)” and independent of each other and of S(J’o,P, <t) and 
S(P,J’o, <t). By repeatedly applying (8) to these tuples and using (1) we obtain 

(14) - 2n W J d ,  t 1) 
P’ll =HN) 

provided that P ‘ I I  is defined. If Pfl l  is not defined then =O. hence (13) still holds true if we 
replace P’11 by the right-hand side of (14). Since we are considering a safe attack, the security 
checks by individuals in JO on messages received from participants other than E wi l l  be satisfied 
with probability 1. Therefore we may apply main condition (9) for each a in J’o without the sto- 
chastic variable sec(a,r) on both sides of the equality. By combining (9) for each a in J’o with 
(I), we obtain 

P’I2 =Pr[a(J’o,P,r) I a(J’o,P, <t),a(P,J’o, <t)] . (15) 

We note that E receives messages only from Jo,E and J ,  that u(J’o,E, a) is contained in 
o(J’o,P, <t), while o(J,E, <t) is contained in a(J, 8, u E, <t). JO receives messages only from 
C,E,Z and the representatives in 8,. u(E,Jo,<t)  arid a(Z,Jo,<t)  are contained in u@’o,P, <t) 
arid u(J, 8, u E ,  a), respectively. Moreover, from the relationship between messages sent, and 
messages received by representatives (which holds for proper executions), it follows that 
u(B,,Jo <t) is uniquely determined by o(C,Jo) and a(J, 8,, < I ) .  By combining these facts we con- 
clude that a(P,J’o,<t) can be expressed as a function in u(J’o,P, <t ) ,  o(C,Jo), 6, and 
o(J, 8, u E, <t). A combination of this with (13), (14) and (15) yields that there is a function D, 
with 

By combining this with (12) and (1 1) we obtain 
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Pr ( t )  = H N ) -  2nda(Jo,P,r))~,(u(~'o,p, <t)C,(s(J,P,  <t) ,s(P,J,  < t > > x P r ( t  - 1) . 

Note that this is true also if P'1 is not defined. Together with the induction hypothesis this 
proves Lemma 1 for moment t. 0 

Let F1, . . . , Fr be functions of S. We say that the values si, . . . ,s, of F , ( S ) ,  . . . ,Fr(S), 
respectively, come from the sante proper execution if there is a proper execution s such that 
s 1 =Fl (s), . . . , s, =F,(s). Lemma 2 gives the number of possibilities for the messages generated, 
sent or received by the individuals in Jo. given only the moments at which the individuals in Jo 
generate, send or receive their messages, the allocation of representatives to Jo, and the steps 
invoIving the members of J.  

Lemma 2. There is afunction X with the followingproperv: for each t >O, and all values uo of 

Z(J'o,P, Gt), uco OfZ(C,JoX B, @or, SJP ofS(J,P, s t ) ,  SPJ ofS(P,J,  W, UP of 
Z(J,E), u E, G t ) ,  and U*J ofZ(8, u EJ,  Gt), such that 

and 

uo , uco ,&, U J* , u. J Come from the same proper execution, 

there are exactly $+") tr'%)-'*.e+~) values so ofs (J 'o ,P ,  <t) such that so,uo, uco, of, s jp ,  ~ p j ,  

UJ- and u.3 comefrom the swneproper execution. 

Proof. In this proof we shall often refer to the description of the credential mechanism in 53.3, 
and the reader is advised to consult this. The values so of S(J'o,P, < t )  we are looking for, con- 
sist of tuples x=(m,a,P,u)  with m E M ,  LYEJ'o,  B E P  and u < t  If m EM" or rn =(9,r,y)EM' 
with y E {true, false} then x Euo. For the remaining tuples x we have a f E ,  /3#E and 
m =(T,r,y)EM',  where each u(x)=(T,r ,  a,#l,u) is contained in uo and the set of valuesy must 
satisfy the constraints imposed by the description of the credential mechanism in 53.3, the 
allocation of representatives, and the steps in which the members in J generated, sent or received 
their messages before moment t. Our purpose is to count the number of possibilities for the set 
of valuesy. From the description of the credential mechanism in 53.3 it follows that eachy is 
either equal to one of the tuples (r,,sl: 2 = 1, . . . ,n) generated in the steps 3 of I(ik,A,) up to 
moment t, or can be derived from these tuples and the messages received by J O  up to moment t 
from Z or their representatives, by using the computations prescribed in the credential mechan- 
ism. But b~ proper executions, the messages received by JO can be determined from the &0ca- 
tion uco and S J P .  Hence the number of possibilities for the set of valuesy is equal to the number 
of possibilities for the set of tuples (rl,sl: 1 = 1, . . . , n )  generated in each step 3 of I(ik,A,) UP to 

moment t for ik €Jo and l=Sj<L.. We shall prove that this number is equal to 

407 2nr(oo) -x(~ ,er .~ . , )  where 

X(n,@,,U*J)=nhl 14inhz + ~ 3 + ( l / i n - 2 ) x 4  , (16) 

and X I  is the number of steps 5 of f ( i k , P l j ) ,  h2 the number of steps 8 of f(ik,A,), A3 the number 
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of steps 2 of II@,,A,), and 
organizations A,, which are executed up to moment t .  Note that all these steps are contained in 

the number of steps 5 of II(gj ,Aj) ,  for all ik E J o ,  g, Ed,, and 

a*/. 

Let ik EJo and g, the representative allocated to ik for communication with A,. Suppose 
that at or before moment t ,  step 3 of I(ik,Aj) has been executed (this can be derived from q), 
and let p=(q ,s / :  I = 1, . . . ,n) be the tuple chosen in this step. We have to count the number of 
values for p such that p ,  UO. UCO. , . . , u.J come from the same proper execution. Each step v, 
executed up to moment t ,  in which Z or an organization receives a message from an individual in 
JO or one of its representatives (which is contained in spJ), imposes certain constraints on p ,  
which will reduce the number of possibilities for p .  Without any of these constraints, there are 
I#J(Np possibilities for p .  

If v iS Step 5 of I(ik,A,), then z receives numbers ak/ ( I  = 1, . . . , n), which should be equal 
to f(Uk(m/rTfJ).@qJ. These relationships reduce the number of possibilities for p by a factor 
+(N). Indeed, sincepjqj is coprime with +(N),  each rl determines a unique s~ such that these 
relationships are satisfied. 

If v is step 8 of I(ik,A,) then Z receives q,sl with 1 '25 ,  where S is the set sent by 2 to ik 

in step 7. As remarked before, each s[ is determined by ak/ and r/ and does not impose addi- 
tional conditions on p. Obviously, the released values r/ reduce the number of possibilities for p 
by a factor HN)"". 

If v is step 2 of IIl(gi,A,), then Aj  receives ug,, which must be equal to uk&), and wg,, 
Hn 

/ = 2  
which must be equal to ~p-l(nr,,(cl,)~J, where a is the permutation defined in the description 

of II(gj,A,) in 53.3, and i,,(cl, =rnNo&) for 1 = 1, . . . , En. Since both a and 6, are coprime with 

H N ) ,  '41) and J J I ~ N c )  are uniquely determined by ugJ and wg,. This reduces the number of pos- 

sibilities for p by a factor HN)'.  

Hn 

/ = 2  

Finally, if Y is step 5 of II(9/,A,) then A, receives Cg,, and also numbers r/ (1 =2, . . . ,En) 
which should be equal to ;40 /i41), respectively. From this it is possible to determine Uniquely 
a set of values q, not shown to Z in step 8 of I (ik,A,). Since each of these t-1 determines a 
unique sl, this leaves us only one possibility for p .  In other words, the number of possibilities for 
p is reduced by a factor + ( N ) H n - 2 .  

Other steps v in which Z or the organizations received messages up to moment t do not 
further reduce the number of possibilities for p. Thus for each tuple p generated in step 3 of 
some I(ik,A,) we have a specified number of possibilities. We obtain (16) by taking the product 
of all these numbers of possibilities, over all steps 3 of 
before moment 1. 0 

I ( i k , z i j )  with ik EJo, executed at or 
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4.3. Proof of Theorem 1 

We shall prove that for each r > 1 there are functions El and F, such that for all values uco of 

Z(Q, u E,J ,Gt ) ,  with Pr[err~,~,~~~,u~/.,u.J] =Pr[qp,spJ]>O we have 
Z(C,Jo), 8, Of 81, s ~ p  Of s ( J , P ,  Gt) ,  S ~ J  of S(P,J, Gt) ,  UJ* of Z(J ,8 ,  U E , G t )  and U*J of 

We now prove (17). We iix uC0,8frsJp, S~J,UJ*,U*J with P r [ 6 1 , ~ ~ p , s p ~ , u ~ ~ , u ~ ~ ] # 0  and 
assume that Pr[u~O,B,,up.u.j]#O which is no restriction. We have 

where the outer s u m  is taken over all values uo of Z(Y0,P,  G t )  such that uo,uco,8f,uJt,u*, come 
from the same proper execution, and the inner sum over all values SO of S(J'o,P, < t )  such that 
so, 00, QCO, S,, SJP,  SPJ ,  up, and U*J come from the same proper execution. From SO,  UCO, s ~ p ,  

and s p ~  it is possible to derive all steps executed by C and the representatives. Hence if SO, UO, 

UCO, 4, S J ~ ,  s p j ,  up, and u-J come from the same proper execution s, then Pr[sO,s~p,sp,,ucoJ= 
Pr[s(P,P,  Gt)] .  By Lemma 1 this implies that 
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5. THE FORMAL CREDENTIAL MECHANISM 

In this section we describe a formal credential mechanism which is similar to that of 93 except 
that it is based on an “ideal MA-cryptosystem” of which the underlying message space is a free 
multiplicative module over the rational numbers with denominator coprime with +(N) and the 
one-way function maps this message space on multiplicatively independent elements of this space. 
In &6,7 we shall analyze this formal credential mechanism for protection of organizations against 
cheating individuals. 

5.1. Description of the underlying message space 

In order to give a proper description of the underlying cryptosystem we have to introduce some 
notions about free multiplicative modules. 

For any set Y and any integral domain 9, we denote by %[TJ the set of all finite formal 
products 

where 51, . , . ,(, €3 and V l ,  . . . , V, are different elements of Y. The empty product is denoted 
by 1. We shall i d e n w  two formal products 6 . . . vf. and fl . . . if and O d Y  if there is 
an r with r < t  and r G s  such that after reordering the terms of both products, ti =O for 
r<i<t,q,=O for r < i d s  and V,=Wi and & = q i  for l&i<r. %[Vl is a free A-module, of which 
the addition is the multiplication of formal products, defined by adding the exponents, and scalar 

multiplication is raising a formal product to a power in %, i.e. multiplying the exponents of that 
product with that power. 

We shall recursively construct a free %-module which contains Y and which is closed under 
application of some “formal one-way function”. Put 

31 =%[TI, Fl ‘ {FX : XE%,}; 
%,=%[%,-I Us,-;], ?Fr={Fx : X € % , \ % , - l }  forr=2,3,4,. 

and assume that Fx#FY if X#Y and Fr n 9Ir = 0 for I = 1,2,3, . . . . Put F= U Fr and defme 

the function F :%[Y u q+% by F ( X ) =  Fx. The module %[Y u fl endowed with the function 
F just defined is denoted by %[F,Tj. Different choices of the sets FL will lead to isomorphic 
modules %[F,TJ. If @ is a subset of % [ F , v  we denote by A[F,&] the smallest %-submodule of 
% [ F , v  which contains @ and is closed under application of F. 

m 

r = l  

TO the numbers u 1, . . . , UR issued to the individuals I i , . . . , I R  by Z in the credential 
mechanism, and to m l ,  . . . ,m,, chosen by 2 during the initialization of the credential mechan- 
ism, we associate formal vanables U1, . . . , UR, M I ,  . . . , M,,, respectively. Also other formal 
variables H 1, . . . , HT are introduced, which correspond to numbers chosen by the individuals 
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themselves. Let 

- a 49 = {- : a , b E Z ,  gcd(b,$(N))=l} ,  

X = { ~ I , .  . . , U R , M I , .  . . , M n , H 1 , .  . . , € € T I ,  
b 

Z=G[F,?€], 

where F is a formal one-way function as described above. 

F-homomorphisms as defined below establish a relationship between the pairs ( Z , F )  and 
(Zk,f). A mapping I) : %-+Zf, is called an F-homomorphism if it has the following properties: 

+ is a homomorphism with respect to nultiplication; 
!w(W))=ftflW)) for W E E ;  

HW')= [$(W)'IF for WEZ,a  E E , b  E E  with gcd(b,+(N))= 1; 

$(uk)=uk for k = 1, . ~ . , R, J.iM,)=m, for 1 = 1, . . . ,n. 

Thus an F-homomorphism is uniquely determined by its images in H 1 ,  . . , H T .  

5.2. Computations on E 

Z is closed under the following operations: multiplications, multiplicative inversions, applications 
of F, and taking roots, i.e. raising to powers a-' where a is an integer, coprime with H N ) .  We 
shall endow Z with a computational model, based on these operations, which is used in protocols 
of which (part of) the transmitted messages are elements of Z. 

A computation on Q, is a repeated application of multiplications, multiplicative inversions, 
and F, (but not taking roots), to elements of Z. If 9 ~ 5 5  then X €0, is said to be computable from 
Q if it can be obtained by applying a computation to elements of 9. Thus the set of elements of 
% computable from '9 is equal to Z[F, 91. By assumption, the elements of 
3c={U1,.  . . , U R , M ~ .  . . . , M , , H I , .  . . , H T }  are computable. 

An extended computation on Z is a repeated application of multiplications, multiplicative 
inversions, F, and also taking roots, to elements of %. Each element of % can be obtained from 
X by extended computations. 

Consider a protocol in which !Z is (part of) the message space, such that each participant 
may apply all possible computations to the elements of X and to the messages which it received 
during an execution of the protocol, but only a few mstinguished participants are allowed to do 
extended computations. Let a be a participant which is not allowed to do extended computa- 
tions, and let W e )  be the stochastic set of elements of I, received by a before I ,  which are not 
computable from 3c. Then at moment t ,  a can compute each element of the set 
Z[F, X U Q ( C t ) ] .  Obviously, t h i s  set is stochastic and might  ow for increasing t .  

Let 9 be an F-homomorphism, and let 9 be a subset of I. containing X. Suppose that 
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some participant a has received all messages in H9) during the execution of some protocol, of 
which Zk is (part of) the message space. If a can break RSA for the modulus N ,  then he can, in 
principle, compute $(A)  for each A in Z. If a can not break this RSA-system then in principle 
he can still compute $(A) for each A in Z which is computable from 9, by applying multiplica- 
tions and multiplicative inversions in ZL and f to the elements of IJ(Q). As far as we know, the 
following question -which should be stated more precisely- is s t d l  open: 

are there a modulus N and a one-way function f:Zk-+Zf, such that for each F- 
homomorphism # and each A in Z not computable from 9, computing HA j from Ic.(GD) is 
as dillicult as breaking RSA for the modulus h? 

5.3. The formal credential mechanism 

We shall use the same notation as in the previous sections. The formal credential mechanism will 
have the same set of participants P as the credential mechanism of $3, consisting of the signature 
authority Z ,  the organizations A 1,  . . . ,AL, the individuals i 
tatives, the outside world E and the allocation center C. As before, the numbers H N ) ,  
c 1,  . . . , CK, a, p 1, . . . , p ~ ,  q 1 ,  . . . , qL are pairwise coprime and p . . . , qL are primes larger 
than En, where n >4 is the security parameter in the validating part. The message space M wiU 
be defined in the same way as in 53.5, except that Zf is replaced by E. Thus M = M '  u M", 
whereM'=rIXXXYYth Y = F + ( Z ) U F ( { l ,  . . .  ,n})u{true,false}andM"isthesetof 
messages sent or received by E and C.  A €2 is said to be contained in a message m if 
m=(9',r,y)€M' and A is an entry ofy. We say that participant a generates (sends, receives) 
A EZ in step r of 9' if a generates (sends, receives) the message (9 , r .A) .  Again the time will be 
modelledasasetofdiscretemoments, T={O,1,2, . - . } .  AgainweputX=MXPXPXT.  For 
each x =(m,a,P,t)EX, we let C ( x )  denote the set of elements of 'z contained in m. In particu- 
lar, C ( x ) =  0 if m EM". If a is a subset of X then we put C(o)= u C(x). 

. . . , iR, the individuals' represen- 

x €a 

We postulate that all participants of the credential mechanism can apply all computations 
to elements of 3c and elements of Z which they received during an execution of (an attack on) 
the formal credential mechanism; only signature authority Z can do extended computations. The 
computational abilities of each participant a of the formal credential mechanism can be expressed 
in terms of its collection of choices ea (cf. $2.3). The outside world, allocation center and 
representatives will all have a unique choice, satisfying the same conditions as in 33.5. (2, con- 
tains all choices satisfying property ( 2 )  with a = 2. (cf. $2.2). If a € ( I 1, . . . , ~ R , A  1 ,  . . . , A L }  
then (?a contains all choices p a  = @ a , r : t  >O} which have, apart from property (2) in 52.2, the fol- 
lowing restriction: i f y  E X ( a , P ,  ( t ) ,  x EX(P, ,a ,<t)  and s EX(a,P, t )  thenp,Jy,x,s)=O if 
C(s) contains elements from % which are not computable from the elements in C(y) u C(x). 

The formal credential mechanism can be described in a similar way as the "real" credential 
mechanism of § 3 ;  only all numbers in H; appearing in the real credential mechanism are 
replaced by their inverse images under 4, where + is some F-homomorphism. The formal 



151 

credential mechanism will satisfy the conditions of $3.5 with 41: replacing Zk. The only exception 
is made for the elements of E corresponding to the numbers r1,q chosen in step 3 of some 
Z(ik,A,): these will correspond to Merent elements of the set { H I ,  . . . ,HT) which need not be 
chosen by means of a uniform distribution. We notice that in particular, Z chooses the sets S in 
step 6 of each Z(ik,A,) uniformly from the subsets of { 1, . . . , n) of cardinality ‘hn and indepen- 
dently of the other steps executed at the same moment or before. 

Elements of E, chosen or computed in the formal credential mechanism will be denoted in 
the same way as the corresponding messages in the real credential mechanism of $3.3, except that 
lower case characters appearing in the bases of the expressions in $3.3 are replaced by 
corresponding capitals, that f is replaced by F and that exponents 7; are replaced by b -’. Apart 
from that, steps in the formal credential mechanism will be denoted in the same way as the 
corresponding steps in 53.3. Subprotocols in the formal credential mechanism will be given the 
same names as the corresponding subprotocols in the real credential mechanism. 

6. UNFORGEABILITY 

In this section we formulate analogues of properties 1,2 and 3 mentioned in $1.1 for the formal 
credential mechanism, give a theorem, stating that the probability that these properties do not 
hold is bounded above by a number which is exponentially small in the security parameter n 
appearing in step 3 of I(ik,A,), and give an example of an attack, showing that the upper bound 
in the theorem is optimal. 

6.1. Statement of the result 

We shall use the same notation, and make the same assumptions. as in the prevlous sectioas. In 
particular, 41: will have the meaning of $5.1, @((N), c 1 ,  . . . , CK, a, p I ,  . . . , p ~ ,  q I ,  . . . , qr. are 
pairwise coprime, and p 1,  . . . , qL are primes larger than ’hn. We put b, =pJ c 1 :; . CK for 
1 =1,. . . ,L .  For any P E E  and c E Z  with gcd(c,@((N))= 1 we shall refer to Pc 
c on pseudonym P”. The same computational model for the formal module Z as introduced in 
55.1 will be used. 

2 

as “credential 

Consider an attack 6? on the formal credenhal mechanism in which Z does not cheat. Let 
P be a pseudonym, used by some representative gJ during an execution of &. We say that P is 
properly validoted for organization A, during this execution if the following happens: 

in step 2 of ZI(gJ,A,), gJ sends P to A, together with some message W p ,  and P#Q and 
PWP#QWQ for each other pseudonym Q which was sent to .4, together with WQ at the same 
moment or before in step 2 of some other subprotocol IZ(g’,,A,); 
0 in step 5 of IICS/,AJ), gj sends Vp,T2p, . . . , Tlhn,p to A, such that 
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There is nothing which prevents organizations from accepting pseudonyms which are not prop- 
erly validated. However, organizations accepting such pseudonyms will in the worst case only 
harm themselves, since 2 is only willing to compute credentials on pseudonyms which are prop- 
erly validated. (cf. II(gi,A,) and step 4 of ZII(g,,A,,c) in $3.3). 

We say that a set of pseudonyms, properly validated during an execution of &, has the 
unforgeabiliry properg if it  satisfies the following three analogues of properties 1,2 and 3 of $1.1: 

it can be partitioned in two ways: 
in I-sets each containing the pseudonyms used by the representatives of a fixed individual, 
and 0-sets each containing the pseudonyms which have been properly validated for a fixed 
organization; 

each I-set and each 0-set have at most one pseudonym in common; 

if P is a pseudonym, properly validated before moment t, and c a credential, then P c  
computable from 3c and the set of elements of 41. received by the individuals before 
moment t if and only if this set contains Qc 
same I-set as P. 

- I  
is 

- 1  

where Q is a pseudonym belonging to the 

The set of pseudonyms for the attack & is defined as the stochastic variable of which each 
value is the set of pseudonyms properly validated during an execution of 8. Henceforth we shall 
implicitly assume, when spakmg of an attack on the formal credential mechanism, that the 
choice of any participant a in this attack belongs to the collection C, described in $5.3. The fol- 
lowing theorem is proved in 97. 

THEOREM 2. Let & be uny attack on the f o m l  credential mechanism in which Z does not cheut 
(possibly the credential mechanism itserf. Then the probability that the set of pseudonym for @ does 
not have the unforgeability proper& is at most LR X ('An,) -1 . 

Remark 1. By Stirling's formula, the upper bound mentioned in Theorem 2 is approximately 
equal to LR X(%m)"2-". In the next subsection we shall describe an attack, showing that the 
upper bound for the probability in Theorem 2 can not be essentially improved. 

Remark 2. Each attack on the formal credential mechanism can be "translated" into an attack 
on the real credential mechanism of 93 by means of an F-homomorphism 4. In fact, each attack 
on the real credential mechanism can be considered as such a translation, if values of Z;, 
obtained during an execution of such an attack by other means than multiplications, multiplica- 
tive inversions or applications off; are assigned to +!,(HI), . . . ,$(HT). 

As a consequence of the remark made at the end of 55.2 it is still unknown whether there is 
an attack on the r ed  credential mechanism which gives individuals a chance considerably larger 
than LR X ( & ) - '  of getting validators for a set of pseudonyms not having the properties 1,2 or 3 
mentioned in 51.1. 
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6.2. Attacks on the formal credential mechanism 

It will be proved in 97, that a set of pseudonyms, constructed as prescribed in the formal creden- 
tial mechanism, wiU have the unforgeability property. Therefore, individuals might only obtain a 
set of pseudonyms without the unforgeability property by means'of some attack on the formal 
credential mechanism. We assume that Z is trusted by the organizations, whence that 2 does not 
cheat in such an attack. The choices of the individuals in such an attack will have the constraints 
described in 95.3. 

Cheating individuals will only be able to compute a set of validators for a set of pseu- 
donyms without the unforgeability property if they succeed, by means of some attack, in getting 
elements of E from which these validators can be computed. There are two ways by which 
cheating individuals could get such elements. The first way is a kind of cooperation, in which 
each cheating individual sends all his received elements of E to the other cheating individuals. 
Such a cooperation can even take place with organizations. The second method by which a 
cheating individual ik may obtain appropriate elements of Z is by sending, in step 5 of some 
I(ik,A;), elements AM (1 = 1, . . . , n) to Z which are not all computed in the way described in 
step 4. Since the set S , generated by 2 in step 6, will be chosen uniformly from all subsets of 
{ 1, . . . , n} of cardinality 'hn, and independently of all what happened previously in the attack, ik 

may have a considerable chance of not being able to show all RI,& to Z in step 8. Moreover, 
even if ik is able to show all these RI,&, the probability that he will get a validator vk, in step 11 
which is useful for his purposes, is in general quite small. 

An example of an attack. We shall describe an attack on the formal credential mechanism 
in which a single individual tries to obtain a validator for a pseudonym on which he can compute 
each credential he likes just by himself. In this attack he need not cooperate with other partici- 
pants of the credential mechanism. 

Let ik,Aj be an individual and an organization and let gj be ik's representative communi- 
cating with A/. Let a, pi, qj,  c 1 ,  . . . , CK have the same meaning as in 93.3, and put p =pi, q =q,, 
c =c1 . . . CK, b=p2c .  Since gcd@,c)= 1 there are integers a,/? such that ap2  +/3c=1, which ik 

can compute easily by means of Euclid's algorithm. All steps we refer to wil l  be in I(ik,A;). In 
step 3 ik chooses 2n elements RI,SI ( I  = 1, . . . ,n) of E, as in the formal credential mechanism. 
In step 4 he computes 

Akl :=F(U~-Qp2(M[R;1)b )S~4  for [ = I , .  . . ,%n, 

Akl:=F(Uk(MfRT)b)Sfq for [ = % + I , .  . . ,n. 

ik is able to show Rr,S/ (1 ES)  to Z in step 8 which for all I in 5 satisfy the condition of step 9, if 
and only if 2 chooses 5 = { 'hn + 1, . . . , n } in step 6. The probability that 2 chooses this set is 
( Mnn)- l .  Provided that the check in step 9 gives the value 'true', 2 sends to ik the validator 
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By multiplying v k ,  with UFa(MIRT)b n S y ' ,  and using that l-ap2=/!3c, ik obtains 
I = 1  

where 

u s, = U ~ - ~ ~ ( M ~ R T ) ~  = u ~ c ( M ~ R ' ; ) ~ ,  

T { = l ,  and T,=M,RF(MIR;I)-' for 1 = 1 , .  . . ,%n 

Hn 

I =2 
When gJ sends Ug, , Wg, : = and TI ( I  =2, . . . , Lhn) to Aj  during IIcg/,AJ),  then AJ 

will accept Ug, as a pseudonym. ik is now able to compute L$; for each credential CI and Show 
these to AJ even when n o  other organization has issued this credential to one of ik's representa- 
tives. Hence no set of pseudonyms containing Up, can have the unforgeability property. We 

repeat that the probability of success for ik is at most (&)-'. If all R individuals would try this 
attack for all L organizations, and if LR is small compared with (&), then the chance that at 
least one of the individuals is successful is approximately LR X ( I&)-'. This shows that Theorem 

U 7$', k 6 6 .  
- 1  

2 is optimal. 

7. PROOF OF THEOREM 2 

In 57.1 we introduce some notation, needed in the proof of Theorem 2. In 97.2 we prove that a 
set of pseudonyms, constructed in the way prescribed in the formal credential mechanism, has the 
unforgeability property, and in 557.3-7.5 we shall prove that whatever attack they try, individuals 
will have only a very s m a l l  chance of being able to validate properly a pseudonym which is not 
of the form described in the formal credential mechanism. 

7.1. Notation 

For any integral domain 3 with unity, we denote by 9' ( r  = 1,2, . . . ) the %-module of t-tuples 
(XI ,  . . . . x I )  over Q, and by am the %-module of infinite tuples ( x l , x 2 ,  . . * ) over A of which 
at most finitely entries are non-zero. The tuple of which all entries are 0, is in each module 
%' (I = co,1,2 ,...) denoted by 0. 

Let N,Z,Q denote the set of positive integers, the set of all integers, and the set of rational 
numbers, respectively. For any c EN, put 

Q = (2  : a,b EZ,gcd(b,c.#l(N))= 1 )  . ' b  . , -  
In particular, Q = Q 1 .  If a,j3€Q we write a z p  mod c if there is a y € Q ,  with a- ,B=yc.  If 
a = ( u l , u ~ ,  - . . I ,  b = ( b l , b * ,  . . . )  EQ (r€(m,1,2,  . . . } )  thenwewritea=bmodcifu,--b, 

' I  
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mod cfor i=1,2, . . . . 
We shall use the Same notation as in the previous sections. In particular, we have 

I 

L=Q[F,3C]=Q[3CU51, where,similarto$5.1,X=(UI ,..., U R , M I , .  . . ,M,,,Hl,. . . , H T }  
and 5 is the set of images of F. Since 5 is enumerable we may write F= ( F 1 , F ~ , F 3 ,  . . - }. Thus 
each element of E can be written as 

or, more compactly, as 

where 

- R  

- n  - T  
x = ( x ~ ,  . . . , x R ) E Q  

W=(Wl,. . . , W , ) E Q  

, y=@l,yz,  . . . )Ebm , 
, Z=(Zl, . . . ,ZT)EQ , 

and U", FY, MW and HZ are abbreviations of 

R T ne, fie, f i M : ,  and ne, 
, = l  r = 1  r = l  r = l  

respectively. 

similar to the previous sections, 2 denotes the signature authority, A . . . , A t  the organi- 
zations, and z'1, . . . , iR  the individuals participating in the formal credential mechanism. As 

before, c 1 ,  . . . , CK, a, p 1 ,  . . . , p ~ ,  q 1 ,  . . . , qL are positive integers which are pairwise coprime, 
and coprime with H N ) ,  and p 1 ,  . . . , qL are primes larger than En. From now on we assume, 
when referring to the formal credential mechanism, that it is modified in the following way: 
whenever Z or some representative must send an element of L to some individual, then it sends it 
to all individuals. Thus all individuals wil l  have exactly the same computational abilities in Z. It 
is obviously sufficient to prove Theorem 2 for this modified formal credential mechanism. 

We say that X EQ, is computable by the individuals, or that the individuals can compute X, 
at moment t if X is computable from X and the elements of Z received by the individuals before 
moment t during an execution of an attack on the formal credential mechanism. By saying that 
the individuals can compute X before moment 00 we mean that there is a moment at which the 
individuals can compute X. We shall need the following obvious but important fact: if 
%=( W l ,  . . . , Ws} is a subset of Z containing X, then each element of Z which is computable 
from W can be written in the form 

where the ni andy, are all integers such that at most finitely many of they; are non-zero, and 
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y;=O if F, = F ( X )  and X is not computable from W. 

7.2. Proof of unforgeability if pseudonyms are properly formed 

If P is a pseudonym, used by some representative gj, which has been properly validated for some 
organization A j ,  then tp denotes the moment at which the validation of this pseudonym was com- 
pleted, that is the moment at which step 5 of Il@,,AJ) was executed. 

Consider an execution of some attack in the formal credential mechanism and suppose that 
the set of pseudonyms properly validated during this attack, & say, has the following properties: 

for each P E & , there are a pair ( k J )  with 1 G k dR, 1 <j G L, and RkJ E Z such that 

P = UkRt  and the individuals can compute Rk, at moment t p ;  (21) 

0 for each pair (k , j )  with 1<k<R, IGjGL there is at most one pseudonym P in & satisfying 

(21). 

Then we have 

Lemma 3. & has the unforgeabiiiy property. 

hoof. Define the I-sets 11, . . . , ZR and 0-sets 01, . . . , OL such that the pseudonym in & 
which satisfies (21) belongs to and Oj. Then each I-set and each 0-set have at most one pseu- 
donym in common. Let c be a credential, P a pseudonym in ZI which has been validated before 
moment t, and suppose that the set consisting of 3c and the elements of 55 received by the indivi- 
duals before moment t ,  does not contain any Qc 
duals can not compute P c  
one proves that E has the unforgeability property. 

-I 

with Q €11. We shall prove that the indivi- 
at moment t .  By repeating the same argument for the other I-sets, 

- I  

Let 

- R  - T  
g=(UXFYMWHZ : x=(x I , .  . . , x R ) E Q  9x1 E6, ,yE6r ,wE6n,zEQ } 

and 9 ( u )  the set of elements of % computable by the individuals at moment u for each moment 
u. We shall prove that 3 ( t ) C B .  Obviously, 6D(O)=Z[F,3c] is contained in L?. For each u with 
1 9 u G t  we show that %(u -1)cG implies GD(u)CB. Then it follows by induction on u that 
9(t) cs. 

Fix u with 1 G u S i .  To establish our induction step, we have to consider the set of ele- 
ments of Z received by the individuals at  moment u - 1. This set consists of either credentials on 
pseudonyms or validators. Suppose that some individual receives a validator at moment u - I .  
This validator is ap;q,-th root on some element of 6D(u - 2 ) .  Since B is closed under exponentia- 
tion with numbers in Q , ,  this shows that this validator belongs to 3. By a similar argument it 
follows that credentials f c  on pseudonyms received by some indikidual at moment u must 
belong to G. Suppose that at moment tl - 1 some credential Qc 
received by some individual. Then by assumption, Q must belong to one of the sets Ik with 

- 1  

on a pseudonym Q has been 
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k > 1. Moreover, Q must have been properly validated before moment u - 1. Hence by (21), Q 
can be written as UkRk. for some k >1 and j and some Rk, in q ( u  -2). Since c divides bj, this 
shows that Q‘ 
u - 1 belong to 8. But since 8 is closed under computations, this proves that 9 ( u )  is contained 
in 8. 

-I 

€8. We infer that all elements of ‘55, received by the individuals at moment 

-I 
We shall now show that P‘ GS. Assume the contrary. By (21) and the fact that P has 

been properly validated before moment t ,  there are j and R 1, € 9 ( f )  such that P = U1 R?. since 
c divides b, this implies that f i - l  belongs to 9(t), whence to 8 ,  which is false. Hence our 
assumption must have been wrong. This completes the proof of Lemma 3. 0 

Roughly speaking, Lemma 3 proves that any set of pseudonyms having the form prescribed 
in the formal credential mechanism, must have the unforgeability property. In order to prove 
Theorem 2, it is therefore sufficient to show that the probability that individuals are able to vali- 
date properly pseudonyms which are not of the required form is very small. We shall state this 
more precisely. 

By an A,-validntor for a pseudonym P we shall mean a tuple 

wherep,,q,,b, have the same meaning as before. If P has been properly validated for A j  then A, 
has received an A,-validator for P. Two Aj-validators kp ‘ l )= (Vp1 ,  Wp, ,T2,p , ,  . . . , T g n , p I )  

and V,(P2)=(Vp2,  Wp,,  T l , p , ,  . . . , T H n , ~ * )  for pseudonyms P I  and P 2 ,  respectively, are called 
equivalent if, after reordering, the tuples ( P I  , P I  T$p,  , . . . , P I  d n , P l  ) and 

( P 2 , P 2 1 $ ” 2 ,  . . . , P 2 f i n , p 2 )  are equal. (Loosely speaking this means that that the products of 
the F-values appearing in Vp,  and V p 2 ,  respectively, are equal). Note that in none of these 

tuples, the entries need be distinct. If the validators Y , ( P l )  and q ( P 2 )  are equivalent, then 
P 1 Wpl = P2 W p ,  . Hence any two pseudonyms which have been properly validated for A, must 
have been shown to A, together with inequivalent validators. 

For each attack on the formal credential mechanism, and each j in { 1, . . . , L } ,  the follow- 
ing events are defined: 
El,: in some execution, thye  is a pseudonym P in Y, properly validated for A j ,  such that none 

of the roots (PUT’)’/ can be computed by the individuals at moment t p ,  for k = 1, . . . , R. 

E2j: in some execution, there is a moment t at which the individuals fan compute: two pseu- 

donyms P I  and P 2 ;  the b,-th root of their quotient, ( p , p ; ‘  )bl ; and two inequivalent A,- 
validators V/(P 1 )  and V,(P,)  for P 1 and P2 respectively. 

Informally, E l j  is the event, that a pseudonym, properly validated for A,, is not of the form 
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prescribed in the credential mechanism, and E2, is the event that two “similar” pseudonyms have 
been properly validated with “non-similar” validators. 

Suppose that in some execution of an attack on the formal credential mechanism, none of 
the events E I,, E2, (1GjGL) takes place. Let & be the set of properly validated pseudonyms in 
this execution. Then each pseudonym in & must satisfy (21) for some pair (kJ) ,  since none of 
the events E l j  takes place. Moreover, no two pseudonyms in & can satisfy (21) for the same pair 
(k , j ) .  For if two pseudonyms, P i ,  P2 say, in G ,  would have satisfied (21) for the same pair (k,j) ,  
then at some moment t the individuals would have been able to compute P 1, P 2 and 
(PI p ;  I )bj . But since none of the events E2, was supposed to take place, the validators for P 1 

and P2 must be equivalent, which contradicts the fact that these pseudonyms have been properly 
validated. 

Together with Lemma 3 this implies the following: the probability that the set of pseu- 
donyms for (an attack on) the formal credential mechanism does not have the unforgeability pro- 
perty is at most equal to the probability of event E 11 u E 12 u . . . u E 1L u E x .  Theorem 3 
states, in a more precise form, that this event has probability at most LR X (,hn)-’. This impfie 
Theorem 2 at once. 

THEOREM 3. For each attack on ihe formal credential mechanism in which 2 does not cheat, we 
have 

P r [ E l j ] < R X ( & ) - l  andPr[E2,]=0 f o r j = I , .  . . ,L 

7.3. Preliminaries to the proof of Theorem 3 

We shall use the same notation as in the previous sections. In particular, i 1, . . . , iR wiU be the 
individuals participating in the credential mechanism. We f x j  in ( 1 ,  . . . , L }  and putp=p,, 
q =q, and b =b,. As mentioned before, each element of can be expressed as a finite product 
of powers of which the bases belong to ‘X u F and the exponents to 6. We shall show, that any 
condition that the individuals can ever compute certain elements of % can be expressed as the 
solvability of some system of linear equations modulop2q of which some of the coefficients are 
stochastic variables and the unknowns belong to 6. 

Consider an attack on the formal credential mechanism, and denote the changed version of 
1(zk,A,) in this attack also by 1(1k,A,). In step 5 of I(&,), ik sends elements Ak[ (1 = 1, . . . , n )  

to Z, which might have been computed in an other way than described in the formal credential 
mechanism, and might have been chosen by means of a probability distribution depending on all 
steps previously executed in which some individual was involved. In step 6, Z chooses a set s k  

(which is now indexed in order to distinguish Sets S generated in different I(ik,A,)), by me& of 
a probability distribution which is uniform on the collection of subsets of { 1, . . . , n }  of cardinal- 
ity ’hn, and independent of all other steps executed at the same moment or before in the creden- 
tial mechanism. In step 3, rk has to send Rl,Sl to Z for each I in S k  such that 
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Akl  = F ( u k ( b f l R p ) b ) s f q .  zf z concludes in step 9 that indeed ik constructed each A k l  with 1 E $ k  

in the proper way, then he sends in step 11, 

to i k .  

From now on, we exciude attacks useless to the individuals in which some security check by 
Z in z ( i k , A , )  other than that in step 9 is 'false', or that i k ,  while knowing the correct R1,Sl for 
some I in S k  in step 8,  sends fake RI or S'I to 2. 

For each k in { 1, . . . , R } we introduce the following notation: 

the check in step 9 did not fail, V k  is equal to v k ,  S,, whereas Vk, = 1 if this check failed. We 
I E 5 k  

notice, that Y k  is controlled completely by i k ;  it is independent of 5 k .  We assume from now on 
that ik receives Vk from Z instead of v k ,  in step 11, for k = 1, . . . , R. This does not change the 
computational abilities of the individuals. 

Let f k  be the moment at which step 11 of I ( i k , A , )  is executed, that is the moment at which 
ik (and so the other individuals) receives v k  from 2. We shd  derive the upper bounds in 
Theorem 3 subject to the condition that 

f l < t 2 <  ' . .  < t R .  (23) 

By repeating the argument for each other possible order of the ?k's, one can prove Theorem 3. 

Henceforth we shall assume (23). Each ik sends A k  1,  . . . , A h  to !% before moment f k .  

Hence for k = 1, . . . , R, the individuals can compute Y k  before they receive V k ,  . . . , VR. In 
view of (20), the Y k ' s  have the form 

- n  - T  where S l k ,  . . . , 6 k  -1.k EQpq, x k  EQpq,  - R  y k  EQpq,  - m  wk EQpq' ' k E Q p q .  Apart from V I ,  . . . , VR, 

individuals may receive validators for other organizations, or credentials on pseudonyms, which 
are all d-th roots on messages previously computable by the individuals, where d is a positive 
integer coprime Withpq. We took this into consideration by allowing that the coefficients in (24) 
belong to Qpq rather than 2. 

For k = 1, . . . , R, let Tk be the set of positive integers j such that F , = F ( u k ( M & ) b )  for 
some R1 Sent by ik to z step 8 of I ( i k , A , ) ,  and define e ( 9 k ) E G m  by 



160 

Moreover, dk € 6 ~  denotes the vector of which the k-th coordinate is 1, and the other coordi- 
nates are 0. With this notation we have 

,R . 

The following lemma is crucial in the proof of Theorem 3. 

Lemma 4. Consider an execution of some attack on the formar credential mechanism in which 
Y 1 ,  . . . , YR satisfl (24) and V l ,  . . . , P‘, satisfi (25). Suppose thar at a moment <th + 1 (where 

- R  
h E { 1, . . . , R }  and t R  + 1 : = ca), the individuars can compute U U F f M m H h  E %, where u E Q , 
f€Gm,  m € G n  and h E Q  ~ Then there are m l ,  . . . ,mh €6 such that 

- T  

- R  
Moreover, ifp2u E Q, , then m 1 [ I ,  . . . , mh[h belong to Q,. 

Proof. By (21) there are n l ,  . . . ,nh EGpq, aEQpq, b E Q p q ,  C E Q ,  m d d E Q p p  such that 
- R  - m  - n  - T  

F o r k = ) , . .  . , R , p u t  

Then by (24) and (25), 

using these relationships, it is possible to express each v k  as a product of powers of 
wfi , . . . , ~, in which the exponents belong to 6 and may have denominators divisible b y p  or 
q. Together with (29) this shows that there are m 1 ,  . . . , mh in Q such that 

(IUFfMmHh= . . . flL p F h M C H d  

By combining this with (30) and equating the exponents of U and F, we obtain 
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(we shall not need the relationships coming from the exponents of M and H). Now we obtain 
(26) by multiplying the first equation withp' and reducing it modulop2, and (27), (28) by multi- 
plying the second equation with pq and reducing it modulo p and q, respectively. 

Suppose thatp2uEQ:, and that not all numbers &mk with l<k<h  belong to GP. Then 
there is an integer d, divisible byp, such that all numbers dmk& are integers and at least one of 
them is not divisible byp. But by multiplying (26) with d and reducing it modulop, we obtain 

h 
2 h k 4 k d k E  0 m d p  7 

k = l  

whence dmk.&rO mod p for k = 1, . . . , h. This contradiction shows that all mk.$ must belong 
to iip i f p ' u ~ ~ ,  .  his completes the proof of Lemma 4. 

- R  

The following consequence of Lemma 4 will be useful. 

Lemma 5. Let f E Z co and sqpose that all coordinates off have absolute values smaller than p. If 
there is a moment at  which the individuak can compute F@q)-", then f=O. 

Proof. Suppose that at some moment, the individuals can compute F@q)-lf. Then by Lemma 4, 

eq.(26), t he rea reml , .  . . , m ~ , w i t h m l & ,  . . . ,mR5REQp,suchthat 

By reducing this equation modulop, and using that q is coprime withp, we obtain m k & a  mod 
p for k = 1, . . . , R. A substitution of this into (27) yields that f=--o mod p. But since by assump- 
tion, the absolute values of the coordinates of f a re  smaller thanp this proves Lemma 5 .  0 

7.4. Proof of Pr[E2,]=O 

Consider an execution of some attack on the formal credential mechanism in which 2 does not 
cheat. Suppose that in this execution there is a moment t at which the individuals can compute 
pseudonyms P1,P2, the b-th root of their quotient 
for P I  and P2 respectively, where 

and Aj-validators V,(P,),VJP2) 

V,(Pi )=(Vp, ,  w p , . T ~ , p , ,  . . . , T%,,,P,) for i = 1-2. 

We have to prove that V , ( P l )  and V,(P,) are equivalent 

Put TI , , ]  = = 1 and let f(i)EGm be defined by 
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for i = 1,2. Then 

for i = 1,2. At moment t the individuals can compute 

For i = 1,2 the coordinates of f(i) are non-negative integers of which the sum is equal to En. 
Moreover, we assumed that p >%n. Hence the coordinates of f(1)-f(2) have absolute values less 
thanp. Together with Lemma 5 th is  shows that f(l)=f(2). But this means exactly that y(P 1)  

and vJ(P2) are equivalent. 

7.5 .  Proof of P ~ [ E , , ] z G R x ( $ ~ ) - '  

Consider an attack @ on the credential mechanism in which 2 does not cheat, and suppose that 
during some execution of &! a pseudonym P is properiy validated at a moment t p ,  at which none 
of the b-th roots (PUF1)b-l (k = 1, . . . , R )  is computable by the individuals. We have to prove 
that this can happen with probability at most R X (&-I. In the proof of this fact we need 
some further notation which is introduced below. 

We r d  that tk is the moment at which step 11 of I(ik,A,) is executed, and that 
Ak I ,  . . . ,&, are the numbers which ik sent to Z in step 5 of I(Jk,A,). We define sk as the 
moment at which step 8 of I( ik ,AJ)  is executed, that is the moment at which ik shows Rr and Sl 
t o Z f o r / E S k .  Thestochasticpartidfunctionfk:{l,.. .,n}+Nkdefinedasfoflows:ifat 
moment Sk the individuals can compute R ~ , s ~  such that =F(uk(MIRj')b),sfq then we put 
fk(l)=j, where j is the positive integer determined by FJ =F(uk(MIRf)b). If the individuals Can 
not compute such R1 and Sl then we do not define fk(r). fk is well-defined, that is at moment sk 
the individuals can compute at most one pair (R,,&) for each Akl. For suppose that at moment 
Sk the individuals can compute R I l , S I l  and R2[ ,S21  with A H = F I S P g = F 2 S g ,  where 
F, =F(Uk(MIRf,)b) for i = 1,2. Then at  moment sk the individuals can compute 
(FlFT1)@q) 
as required. 

- 1  

=Sl/St'. By applying Lemma 5 we obtain f'l =F2,  whence RI,=RZ,  S11=S21, 

In the first step of the proof we show that fk is injective. Suppose that fk is defined in both 
1 and m, where 1 and m are distinct integers in { 1, . . . , n } ,  and that fk( / )=fk(m).  Then at 
moment Sk the individuals Can compute RI and R,  such that U k ( h f 1 R ~ ~  = uk(M,,,Rlk)b. But th is  

implies that (M,M,')"-' =RIR,' .  Hence the individuals can compute ( M I M k 1 p '  at moment 
sk. But t h i s  is impossible. For since all elements of % received by the individuals are of the form 
D e  , where D was computable by the individuals before this message was received and e is an 
integer coprime with a, all elements of E ever computable by the individuals must be of the form 

- I  
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UUFCMmHh,  where all coordinates of u, f, m and h have denominators coprime with a. 

In the second step of the proof we show that for k = 1, . . . , R, S k  is statistically indepen- 
dent of xi, Y j  and& for l < j < k  and S j  for l < j < k .  The steps in a subprotocol are executed at 
consecutive moments. In particular, 2 chooses S k at moment Sk - 2, uniformly from the colIec- 
tion of subsets of { 1, . . . , n }  of cardinality !4n, and independently of the steps executed at or 
before moment Sk - 2. Together with (23), this proves that 5 k is independent of xi and y j  for 
1 G j  9 k  and S j  for 1 < j  tk. By definition, the set of elements of Z which is computable by the 
individuals at moment sk is equal to the set of elements of E which is computable from X and 
the elements of Z received by the individuals before moment s k .  The elements of % sent to the 
individuals at moment s k  - 1 are all roots of elements of % which were computable by the indivi- 
duals at moment s k  -2. Hence the partial function fk is completely determined by the set of 
messages executed at or before moment sk -2. This proves that s k  is dso independent of 

f l , .  . 
For k = 1, . . . , R we put %k =&({ 1 ,  . . . ,n}], and %k =al u . . . u % k .  It is easy to 

check that Tk = f k ( S k ) ,  where g k  is the set defined in (25). From the injectivity of f k  it fOflOWS 

that & = 1 (the check in step 9 of I(ik,A,) does not fail) if and only if # y k  =?in and that the 
vector e ( s k ) ,  defined in (25), is equal to (e I ,e2, . . . ), where ej = 1 if j E 4 k  and ej =o otherwise. 
If 4 is some integral domain, % a finite subset of N, and y=(yl,y2, . . . )€a", then we denote 
byy(%)thetuple$l,j2, - - - ) w i t h y i = y i  ifiE"11 andy,=Ootherwise. 

In the third step of the proof we shall show that there exist an integer T with 1 G T G R  and 
integers m k  for I G k S T  such that m k &  is not divisible by q for at least one k in { 1, . . . , T }  and 

Let V,(P)=(Vp, W p , T * p ,  . . . , T%n,P) be an A,-validator for P, let 9 be the set of integers j such 
that F, =F(P7$)  for some 1 in { 1, . . . , %n}, where Tlp = I. Define the vector f(T)€Q 

-00 

by 

Since gcd@,q)= 1, there are rational integers C Y , ~  with ap +&= I .  It follows (cf (22)) that 

k: =F4 ~ 'W)  = (vpp: p - 1 )QpW) 

can be computed by the indviduals at moment t p .  By Lemma 4, eq. (28), with h = R, there are 
& I , .  . . ,&REG such that 

Sincep and q are distinct primes larger than % n  and the coordinates of f(T) are non-negative and 
have Sum En, not dl && are integers divisible by q. Let T be the smallest integer with 
1 s T G R  such that (32) is solvable with &k&=O mod q for k>T. Then 
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and h& is not divisible by q. By Lemma 4 with h = T, ? is not computable by the individuals 
before moment tT ,  so definitely not at moment sT. But since the individuals can compute V at 
moment t p ,  we have 

- 

sT<tp. (34) 

If the sets 'WT and 5 would have an element in common, then the individuals were able to com- 
pute R 1 and R 2 at moment sT such that UkRf = PRq for some k < T. Together with (34) th is  
would imply that before moment t p  the individuals can compute (PUL')'-', which is against our 
assumption. Hence WT n 5= 0. By applying this to (33), using that the coordinates of f(3 are 
0 on the places outside 5 and considering only the coordinates of both sides of (33) on the places 
in the set WT, and multiplying each &k with d ,  where d is the smallest positive integer d such 
that all d& are integers for k = 1 ,  . . . , T,  we obtain that (31) is satisfied with M k : = d ; j l k  for 
1 9 k G T ,  and that m& is not divisible by q for at least one k in { 1 ,  . . . , T } .  

In the fourth step we shall prove that, 

% i n % h = a  for l < i < h < R .  (35) 

Assume that (35) is false and let i and h be integers with l < i t h < R  such that Qi and %h have 
an element in common. Then at moment s h  the individuals can compute R and R 2  such that 
U ~ R ~  = S R $ .  But this implies that at moment s h ,  so definitely before moment th ,  they can com- 

. Together with Lemma 4 this shows that there are m 1 ,  . . . , mh - 1 in Qp with 
- UP ?d,-dd 

P 

h - 1  

k = l  
2 m k & ( d k + p q - ' X k )  I d;-dh rnodp2  

By cornparing the h-th coordinates on both sides of this equation and reducing them rnodulop, 
we obtain that Or- 1 rnodp,  which is impossible. Hence our assumption that (35) is false was 
wrong. 

Our assertion that P r [ E  I,]<R X follows at once by combining the results of the 
previous four steps with Lemma 6 below with K = GF(q). 

Lemma 6. Let K be a field and ler y 1 ,  . , . , Y R ,  f 1 ,  . . . , f R ,  S 1, . . . , S R be stochatic variables, 
defined on the same probability space, such that 
y ~ ,  . . . , Y R  assume there values in Kp; 
f l  , . . . , f R  are injective parrial functions : { 1, . . . , n}+N such that the sets % . k :  = fk({ 1, . . . , n } )  
are painvise disjoint; 
S 1, . . . , S R  are subsets of { 1, . . . , n} ;  
for each k, the distribution of S k  is unijorm on the collection of subsets of { 1,  . . . , n} of cardinality 
Ihn and independent of y k .  f k  and y j , l ; ,  5 for  1 <j tk. 
For k = 1 ,  . . . ,R ,  k t  i70'k=%l u ' ' ' u %k, 5 k  f k ( s k ) ,  
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&=1 if#(9k)=44nandSk=Oothenuise, 
and e(9k)  €K"O the vector of which the coordinates are I on the places in T k  and 0 on theploces 
outside yk. 

For T = 1, . . . , R, let XT be the event that there are m 1 ,  . . . ,my  E K such that mk&# for at 
least one k with 1 < k  G T and 

T 

Then 

Pr[X1 u . . . U X , ]  G R X ( $ $  

Proof. For T = 1, . . . , R let FT the event that XT does not take place. It suffices to prove that 

Pr[X 

since 

Pr[X 

We shall prove (37) only for T > 1; the argument for T = 1 is even easier and is therefore 
omitted. Fix T in (2, . . . , R } and denote by W the stochastic tuple consisting of y j ,  fiuC7') 
and S , ( j C T ) .  Let d be the set of values for W for which (36) has a non-trivial solution (i.e. a 
solution with mk&# for at least one k in { 1, . . . , T } )  but the system 

T-1 

has only solutions with m&k =O for k = 1, . . . , T - 1. Fix w in & and denote the entries of w by 

y,,& (1 G j  

m ' l , .  . . , m ' ~ - l  E K  such that 

T )  and s, (1 <j < T). Let m 1, . . . , mT be a non-trivkd solution of (36). By (38), 
is non-zero. Hence G2LT has cardinality at least En. Moreover. there are 

By combining this with the fact that the sets %k are pairwise disjoint, and considering o d y  the 
coordinates on the places in 'lKT - we obtain 

If (40) could be satisfied by two ditferent tuples (m'k&: k = 1 ,  . . . , T - l), then a subtraction of 
these tuples would yield a non-trivial solution of (38) which does not exist by assumption. Hence 
m'l61, . . . , m'T - 1 h - I are uniquely determined by (40). But this implies that the set 9~ is 
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uniquely determined by (39). By using that fk is injective, we obtain that S T  is uniquely deter- 
mined by (39). But S T is uniformly distributed on the collection of (&) subsets of { 1 ,  . . . ,n} 
of cardinality %n, and independently of W. Hence Pr[X ,  I W = w ] < ( & ) - '  for each w €a. 
Therefore 

8. POSSIBLE EXTENSIONS 

In this section we briefly mention some extensions of the credential mechanism presented in this 
paper. 

An advantage of this credential mechanism is its flexibility. It has only one major restric- 
tion: the set of credentials must be public and fixed before validators are issued, and the amount 
of computation required also depends linearly on the cardinality of this set. A credential 
mechanism presented in [Ch 841, which is a variant of that considered here, solves these problems 
in a natural way. For that mechanism, it is possible to prove an analogue of Theorem 2. A 
result as strong as Theorem 1 does not hold, but instead one can prove that in essence almost no 
information about the relationship between pseudonyms used with different organizations is 
revealed. 

We also considered a variation on the credential mechanism that differs mainly in that the 
validators shown to the organizations are just RSA-signatures on products of the values of the 
one-way function. For this variation we were able to prove an analogue of Theorem 2 which is 
not quite as tight as the result in this paper. This variation has the advantage that it can be 
easily extended-without loss of security for the organizations or privacy of the individuals- to a 
credential mechanism in which each I-set and 0-set can have a restricted number of pseudonyms 
in common which may be larger than 1.  Such an extension may be useful in practice. 

In [Ch 841, several ways were presented to build more elaborate and potentially useful 
structures from these basic credential mechanisms, but the security of such constructions is as yet 
unproved. 
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