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Abstract 
All known methods for transferring electronic money have the disadvantages 

that the number of bits needed to represent the money after each payment 
increases, and that a payer can recognize his money if he sees it later in the 
chain of payments (forward traceability). This paper shows that it is impossible 
to construct an electronic money system providing transferability without the 
property that the money grows when transferred. Furthermore it is argued that 
an unlimited powerful user can always recognize his money later. Finally, the 
lower bounds on the size of transferred electronic money are discussed in terms 
of secret sharing schemes. 

1 Introduction 
Transferability of electronic cash means that the payee in one payment transaction can 
spend the received money in a later payment to a third person without contacting the 
bank or another central authority between the two transactions. As on-line electronic 
payment systems require communication with a central authority during the payment 
transaction, transferability is only an issuc for off-line systems. Although the ability 
to transfer 'normal" money (coins, notes) is very important in our daily life, this 
property has only received very little attention in relation to electronic money. To the 
knowledge of the authors, transferability of electronic money has only been described 
in [vA90], [0090] and [0092]. 

This paper first sketches the (generic) method for transferring electronic cash 
proposed in [vA90]. At a-first glance this method is not ideal, because extra bits are 
appended to the transferred coins, and a person, whose coin has been transferred a 
number of times, can always recognize this coin if he sees it later (this property will 
be referred to as forward traceability). 

Intuitively, it is not surprising that the size of transferred money increases, because 
it must be possible for the bank to identify people, who spends a coin twice. Hence, 
a transferred coin must contain some information about every person, who has spent 
it. 

This paper formalizes this argument, as it gives lower bounds on the number of 
bits needed to represent transferred money. These lower bounds depend on whether 
the systems provide unconditional untraceability or computational untraceability. In 
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particular it is shown that in case of unconditional untraceability the size of a trans- 
ferred coin must increase by the number of bits needed to identify the payer, whereas 
a computational untraceable coin grows with approximately half this number of bits. 

It is furthermore argued that a payer with unlimited computing power can always 
recognize his own money, if he sees it later in the chain of payments. 

All statements in this paper are with respect to coin-systems, but it is not hard to 
see that the results are valid for electronic checks as well. The first section describes 
a general model of off-line electronic coins and presents the notation which will be 
used in this paper. In Section 3 it is shown how to add transferability to all known 
payments systems, and Section 4 and 5 give lower bounds on the size of transferred 
electronic coins. Section 4 considers payment systems providing unconditional payer 
untraceability, and Section 5 gives a lower bound for computationally untraceable 
money. In Section 6 it is argued that thme lower bounds are optimal, and Section 7 
concludes the paper. 

2 The Model 
This section presents a basic model for off-line electronic cash which will be used in 
the following. 

The results in this paper are independent of whether the payments system provides 
a protocol for refunding unspent parts of the money. For simplicity, we will therefore 
assume that the payer always spends his electronic money for its total value (coins). 
Hence, we consider an off-line electronic payment system involving a bank (8) and 
IC individuals (PI,. . . , p ~ )  providing protocols for: 

1. Withdrawal of money from the bank; 

2. Payment transactions from one individual to another; and 

3. Deposit (at B )  of received money. 

The system is said to provide transferability, if the payee in on payment transaction 
can use the received money as a payer in a later payment transaction without talking 
with the bank (or anybody else) between these two transactions. 

The "life-cycle" of an electronic coin in such a system looks like: 

I 

Figure 1: Life-cycle of a coin 

Figure 1 illustrates that a person, p l ,  first withdraws q from B and then spends 
the coin in a payment transaction. During this transaction Q is changed to c1, In 
general, for i = 2,3 , .  . . , n - 1, pi receives ci-1, and when he later spends it, it is 
transformed into q. Finally, pn deposits the coin at the bank, who receives c,,. 
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Unconditional payer untraceability means that even an unlimited powerful ba.& 
cannot identify any of p i , p z , .  . , ,P , , -~  from G. Computational untraceability means 
that given G, the bank cannot identify the payers unless it can make a computation, 
which is thought to be infeasible. 

To prevent a payer Lorn using a coin twice, it most be possible for the bank 
(with very high probability) to discover the identity of such a double-spender. This 
must be possible even if the coins have been transferred a number of timcs after the 
double-spending occurred. 

3 How to Transfer Electronic Money 
This section gives a brief description of the method for transferring electronic money 
presented in [vASO]. As this method is generic in the sense that it works for a large 
class of electronic payment systems, it will only be described in general terms here. 
First a general coin-system is sketched, and then it is extended with transferability 
(for more details see (CFNSO] and [vh90]). It is not difficult to apply this method to 
electronic checks as well (see [vA90]). 

Let the bank have two secret keys So and S, with corresponding public keys PO 
and PI. A signature with secret key S1 is worth a fixed amount (say $l), whereas a 
signature with So is worth nothing. Both signature schemes must have the property 
that it is possible to make blind signatures: A user can get a signature S;(m) on the 
message m, but the signer gets no information about m (for i = 0 , l ) .  See (Cha83] 
and [Cha84] for examples of such signature schemes. 

An electronic coin system can now be constructed as follows. 

Withdrawal 

1. Usex P constructs a message mp of a special form (see later), and proves that 
m p  is constructed correctly (without giving the bank any information about 
mp). 

2. The bank makes a blind signature on mp and withdraws $1 from P’s account. 

3. P recovers the signature on m p .  

P can later pay another person, R, one dollar using the following protocol 

Payment 

1. P sends mp and Sl (mp)  to R. 

2. R verifies that Sl (mp)  is a signature on mp) chooses a random challenge, C P )  

and sends i t  to  P. 

3. P sends back an answer rp.  

4. R verifies that r p  is correct (using cp  and mp). 
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In order to prevent double-spending, m p  must be constructed such that if P can 
send correct answers corresponding to two different challenges, then the bank can 
find P’s identity from these two answers and mp. However, a single correct answer 
must not give the bank any (Shannon) information about P’s identity (see [CFNSO] 
and [vA90] for details about how P can construct rnp and prove to the bank that it 
was constructed correctly). 

The receiver, R, can at any time after the payment deposit the electronic coin at 
the bank (and get $1): 

Deposit 

1. R sends mp, Sl(mp), cp and r p  to the bank. 

2. The bank verifies the signature and that rp is a correct response to the challenge 
c p .  Then the bank increases B’s account with the amount $1. 

3. Finally, the bank searches through its database to see if m p  has been deposited 
previously, and in that case it finds the identity of P (provided the challenges 
in the two payments are different). 

In [CFNSO] it is discussed how it can be ensured that P will always get different 
challenges, if she tries to spend a coin more than once. 

In order to add transferability to this scheme the signature schemegiven by (SO, PO) 
is needed. Furthermore, a one-way function, f ,  is required. 

Before R acts as a payee in a payment, he goes to the bank and performs a protocol 
corresponding to the withdrawal except that the bank gives R a signature &(VIA), 
where VIR has the same properties as mp (in practice, R would get signatures on 
many different messages, VLR,  in an initial transaction). 

When R receives the coin given by S l ( r n p )  from P ,  he does not choose the challenge 
at random, but i ~ 9  

where p~ is formed in a special way (to ensure that R can later deposit the money if 
he wants to, and to ensure that P gets different challenges, if he tries to spend the 
same coin twice - even if P and R cooperate). 

Later R can pay the received coin to a third person, S, without contacting the 
bank between the two payments: 

CP = f (mA,  PR) 

Payment of a transferred coin 

1. R sends m p ,  S ~ ( m p ) ,  rp, r n ~ ,  So(rn~) and p~ to S. 

2. S verifies the two signatures. 
S verifies, that r p  is a correct answer to the challenge f ( r n ~ , p ~ ) .  

3. S computes a challenge, CR,  and sends it to R. 

4. R sends an answer 7-R. 

5. S verifies that PR is correct (using cn and mR). 
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S can in particular compute the challenge cs such that she can later transfer the coin. 
This method has the advantage, that it is easy to implement in known electronic cash 
systems, but it has two drawbacks: 

1. The money grows in size when transferred (because transcripts of the previous 
payments are appended and must be verified in each payment). 

2. If a payer sees his coin later in the chain of payments, he can recognize it. 

It is intuitively clear that the bank can identify double-spenders even if the coins has 
been transferred a number of times, but it is outside the scope of this paper to state 
and prove this property formally. 

4 Unconditionally Untraceable Money 
In this section it is shown that the size of electronic money has to grow each time it 
is transferred, if unconditional payer untraceability is provided. 

Consider the tree of payments constructed as follows. A payer, p l ,  withdraws a 
coin, 4, from the bank and uses it to pay the user p z .  During this transaction 6 is 
changed to 4. Later pz pays this coin to p3,  and after this transaction the coin has 
been changed to 4. In general, we consider n such payments (n E N), in which pi 
receives the coin d-l, and when be spends it again later, it is transformed into 4. 
In the following it will be assumed that the prescribed payment protocol is executed 
correctly in all these transactions. 

again in another correct execution of 
the payment protocol completely independent of pi’s first payment. The resulting coin 
(the payee’s output from this transaction) is denoted c,. In the following we are going 
to look at these c,’s and forget about the 4’s  except d, which we will also denote by 
c,,+I. Figure 2 shows the relation betwccn the payers and the coins. 

The G’S and pi’s depend on the random choices in the transactions and the choices 
of payees. Let therefore Ci be a random variable whose value is c; for i = 1,2,. . . , n, n-t 
1, and let Pi be a random variable whose value is pi for i = 1,2,. . . ,n. 

In this section, a lower bound will be given for the entropies of the random vari- 
ables representing coins. The results are baaed on elementary information theory 
presented in [We1881 for example. In the following H ( X )  denotes the entropy of the 
finite random variable, X: 

Assume furthermore that each pi spends 

H ( X )  = - c Prob(X = z) log(Prob(X = z)) 
I 

(all logarithms are with the base 2). 

will be used repeatedly: 
Let U, V and W be thr& vector3 of finite, random variables. The following rules 

The following lemma will also be used several times. 
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I 
Figure 2: Payment tree for n = 3 - unconditional untraceability 

Lemma 4.1 
Let e > 0, and let U, V ,  W and 2 be four vectors of finite, random variablcs. If 

then 

Proof 

v , z ) + c .  

If the payment system provides unconditional payer untraceability then the condi- 
tional entropy of Pi given Ci equals H(Pi): 

H(P; I Ci) = N(P; )  for i = 1,2,. . . ,n. 
This property can be further strengthened to 

H(Pi I C1,C2,. . . , Ci) = H(Pi )  for i = 1,2,. . . ,n, 

because of the independence of the payment transactions. 
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The fact that the bank can identify double-spenders with probability at least 1 - p ,  
where p is the probability that a double-spender is not detected, implies that 

H(P, I C,, Cj) 5 plog K for 1 5 i < j 5 n + 1, 

where I( is the number of possible payers. Let 

€ = p log I<. 

In practice p must be very small (negligible as a function of a security parameter) and 
then E is very small as well. 

Theorem 4.2 
H(Cn+l) L H(P1) t H(P2) + 4 . .  + H(Pn) - 2 n ~ .  

Proof 
Claim: For 1 5 i 5 n: 

H(Cnt1 Ic~,c~i. . . iCi)  2 H(CSt1 1 Cl,Cz,...,C;,Ci+l)+H(Pi)-2€. 

From this claim it follows by simple induction that 

H(Cni-1) 2 H(Cn+l I Ci) 
2 H(C,+1 I CIlC2) + H(P3) - 2c 
... 

In order to prove the claim, let i E { 1,2,. . . , n} be given, and let A; denote the vector 
(Gl CZ, . . . , Ci). Then 

H(C~+I  I A) = H(Pi,Cn+I 1-4) - H ( 9  I Cn+IiAi) by (3) 
2 
= 

= 

H(f'i, Cn+l I A;) - 
H(Cn+, I pi, Ai) + H(pi I As) - 
H(Cn+l I Pi, Ai) + H ( P i )  - E 

by (3) 

- H(Cn+l 1 Cii-1, Ai) + H(Pi) - 26 

where last inequality follows from Lemma 4.1 and the fact that H(Pi I Ci+1, A;) I 6. 
w 

As the entropy is a measure of the number of bits in optimal encodings, Theo- 
rem 4.2 implies that the number of bits needed to represent an electronic coin grows 
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each time the coin is transferred. Furthermore, the increase is the number of bits 
needed to identify the new payer. In particular, if H(P,) = k for every i (the bank 
needs k bits of information to identify each payer) we see that 

H(Cn+l)  1 kn - 2nq 
and by the symmetry of C, and Cn+l we get 

AS c << k: the coin grows with the number of bits needed to identify the payer each 
time the coin is transferred. 

We conclude this section with a short remark on forward traceability. If all secret 
keys of the bank are uniquely determined by the bank's public key, then a payer with 
unlimited computing power can alway determine, given a transferred coin, if he has 
previously had this coin in his possession: 

1. Simulate another payment of his original coin. 

2. Compute the secret key of the bank (using the unlimited power). 

3. Determine the identity of the double-spender (as the bank would have done). 

5 Computationally Untraceable Money 
In the previous section we saw that unconditionally untraceable, electronic money 
must grow in size when transferred. In this section a similar result is proven for 
computationally untraceable money. 

The tree considered in the previous section is not sufficient to give an interesting 
lower bound on the size of computational untraceable money. This is due to the fact 
that in such a system each y could, in principle, contain all information needed to 
identify p i ,  but no additional information about the previous payers. 

The proof in this section is therefore based on a tree of payments constructed a~ 
follows. First, pb receives a coin, c, from the bank, and then he chooses two payees, 
p i  and p:,  at random among all individuals in the system and pays both of them in 
correct and independent executions of the payment protocol. As the money system 
provides transferability p i  and p i  can later, independently of each other, spend the 
received coin twice in a similar way. In general, for j 2 1 and 0 _< i < 2j-*, p;' transfers 
a received coin to AT1 and dzl. After some time, the original coin has been changed 
to C O , C I , .  . . , Czn-1, where p? is the payer of c2i and q i + l .  for i = 0, 1,. . . ,P-' - 1. 

Let Ci be a random variable with value q, and let be a random variable whose 
value is the identity of pi. Figure 3 shows how Ci ia related to each P;' for n = 3. 

For any i = 0,1,. . . ,2n - 1, let Pi,l,Pi,2,. . . ,P;,,, be the path from the root to Ci 
in the tree of payments (Pi,' = Pi for all i ) .  Hence, p;' (0 2 i < 2j-l) denotes the 
i'th payer (from left) at depth j - 1, whereas P;,j (0 ,< i < 2") denotes then j'th payer 
of the coin which is finally transferred to C;. In both cases 1 I j L n. 

Furthermore, for any pair ( i , j )  where 0 2 i < 2" and 1 5 j < n, let Xi be 
the sub-tree of height n - ( j  - 1) having Pi5 as root. The leaves in this subtree 
be numbered from 0 to Zn+*-j - 1 from left to right. Let Ci have number k in this 
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I 

Figure 3: Payment tree for random variables (n  = 3) - computational untraceability 

enumeration. Then f(z,j) is defined as the index of the leaf with number 2"+'-j - 1-k 
in this enumeration (Cf(i,j) is "symmetric" to C; in the sub-tree T;,j). For example 
for n = 3 

f(0,l) = 7 
f(2,1) = 5 
f(42) = 7 
f(0,3) = 1 

f ( - f (~ ,dJ l  = i- 

The function i ++ f ( i , j )  is a bijection €or every j E {1,2,. . . ,n} because 

Let p be the maximal probability with which a user can spend a coin twice without 
being identified, and let 

L = plog I<, 
where K is the number of possible participants. The property that the bank can 
identify double-spenders can be expressed in terms of entropies as follows. Given two 
leaves ci and c k  (i # k), let j be maximal such that Ck is a leaf in l;j. Then Ci and 
Ck are both (transferred) results of double-spending by pi$. Hence 

H(f'i,j I Ci, Ck) I 6 (*). 
In puticular this implies that 

H ( P i j  I Ci, Cf(i i ) )  _< 6- 
NOW consider the subtree, Tij, defined as the entire tree, but with the tree Ti3 removed 
(Tz,3 for n = 3 is shown in figure 4). 
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Figurc 4: T,,3 for n = 3 

In the construction of the tree it was required that each payer spends the received 
coin twice in two independent payments to two independently chosen payees. This 
means that for any vector, V ,  of random variables in T;; (nodes and leaves): 

EI(PiJ 1 V )  = H(Pa,.) 
(the independence property). As this section considers payment systems, which do 
not (necessarily) offer unconditional untraceability, the proof of the following theorem 
is based on (*) and the independence property. 

Theorem 5.1 
In a tree of depth n: 

2"-1 n ZJ-1-1 

H(Ci)  2 x[ 
i=O j=1 i=O 

2"-'H(Pj)] - 2" - l3n~  

As entropies are always positive this shows that electronic coins must grow in size when 
transferred. TO be more concrete, consider the case where the uncertainty about each 
payer is k (k bits of information are needed to uniquely identify a payer). Then the 
theorem implies that 

k - 3~ 
2 

= n2"(-) 

In particular this means that the entropy of some C; is at least n y ,  and if the 
entropies of all Ci's are equal then 
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This shows that the entropy of the coins grows linearly in the number of transfers, 
and furthermore, that the coins grow by approximately 4 bits when transferred (since 
k >> 36). 

This is less than for unconditionally secure money. The difference is due to the 
fact that a coin, q, in principle may contain all information needed to identify a payer 
as long as the bank cannot compute this identity from the coin. Hence, the uncer- 
tainty about another coin spent by the same person can be very small. Furthermore, 
Theorem 5.1 is tight in a sense to be discussed in Section 6 .  

The theorem is proven by combining two lemmas. The first lemma givee a lower 
bound on H(Ci),  and the second gives an upper bound on H(Pj ) .  The proofs use the 
same four rules as in the previous section. For convenience theee are repeated here: 

H ( U )  2 0 (1) 
H ( U , V )  = H ( U  1 V) - I  H ( V )  (2) 

H ( U , V ) W )  = I - I (U)V ,W)+H(V)W)  (3) 

H(UIV,W) 5 H ( U / V )  (4) 

Lemma 5.2 
For every i (0 _< i < 2") 

n 

H(Ci) L C H(Pi,j I Cj(i,l), * * * Cj(i,j)) - 2nc 
j=1 

Proof 
The proof is very similar to that of Theorem 4.2. 
Claim: For 1 5 j < n: 

H(Ci I C,(i,l), - - * > cj(i,j)) 2 H(Ct I Cl(i,l)r - * j Cj(i,j+l)) +H(Pi,j I Cj(i,l)r * * * 9 ct(i,j)) -2' 

From this claim it follows by simple induction that 

H(Ci) 2 H(Ci 1 Cf(i,n), Cf(i,n-1), * * * > Cj(i,l)) + 
C H(E,j 1 Cf(i,.j), - * > Cj(i,i)) - 2(" - 116 
j=1 

H(pi,n I cf(i,n), Cj(i,n-x), * - * Cf(i,l)) + 
n-1 

C H(Pi,j I Cf(i,j), * * Cj(i,i)) - (2n - 1)t 
j=1 

H(pi,n I Cf(i,n), Cf(i,n-l), - - - v Cj(i,l)) -t 

n- 1 

1 

2 
n- 1 

C H(Pi,j I Cj(i,jl> - 7 Cj(i,l)) - 2nc 
j = l  

because 

implies that 
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The proof of this is very similar to that of Lernma4.1. Now we just have to prove the 
claim. Let i and j be given, and let 

Aj := (cj(i,~), * * * Cj(i,j))* 

Then 

H(Ci I Cf(i,I)> - * . I cj(i,j)) = 
= 

2 
= 

H(Ci 1 4)  
H(Pi, j ,  Ci 1 Aj)  - H(Pi,l 1 Ci, Aj)  

H(Pi,j, Cs 1 Aj) - 
H(Ci I A,j, A j )  t H(Pi,j I Aj)  - c 

by (3) 

by (4) 

By Lemma 4.1 

impli es that 

Thus 

H(Pi,j I cj(i,j+l), Aj) i 

H(Ci I f ' i , j ,  A j )  2 H(Ci I Cj(i j+t) ,  A j )  - 6 -  

N(Ci)  L 
= 

H(Ci I Cj(i,j+l), Aj)  + H ( E , j )  1 Aj - 26 
H(Ci J Cj(i,l)y.. . , C,(i,j+l)) + H(Pi,,j I Cj(i,l),  . * * t C j ( i j ) )  -. 2~ 

This completes the proof. I 

In order to give an upper bound on H ( P : )  it is necessary to introduce some more 
notation. Consider the sub-tree Tk,, of height n - j + 1. This tree has two sub-trees 
Tk,j.+l and T,(k,j),j+l of height n - j. We define Bk,, to be the set of leaves in the 
subtree, which does not contain ck. Hence for 0 5 k < 2" and 1 5 j < n is Bkj 
defined as the set of leaves in the subtree Tf (k , j ) , j f l .  For example, for n = 3: 

B z , ~  = { C4, CS, el37 C,) 
B3,2 = {cO,cl) 
B6,Z = {c4,c6} 

B4,3 = (c6) 

Bkj has the property that each element in B k , j  iu a leaf in T k , j + l ,  and the set of d l  
leaves in Tkj+l for 1 5 j 5 n - 1 is 

Akj := Bk,l u Bk,z  u . . . u Bk,j. 

Furthermore, Tk,j is the srnallest subtree containing c k  and c for every element c E 
Bkj. Thus 

H(A,j I c, ck) 5 €. 

Lemma 5.3 
For 0 I k < 2": 



402

Proof
Let k be given. Since At,;-i is the set of leaves in Tkj for 2 < j < n, the independence
property implies that

(this is the only time the independence property is used). Now

j=2 j=2

hj I / ^ - i . ^ - i ) - #(ft I Pk^Pkj-uAtj.i)] by (3)

Ift. A.,-1, Aipi_0 + # ( f t | P*,3_lf Aij.0] -

by (3)

IP*,,, Ahll) +>=2

£ PHJ, AhJ) - H(Ck I PkJ,

^ E ^ ( A j I ft, AkJ-!) + H(Ck | Pk^At.i
i=2

£[tf(ft 1

n
<T \ * tf( p

< E^(ftj
J=2
n-1
\ •• r rr/ /^ 1
^ [731 I Ofc I
J=2

Pk.i,AkJ)

\Gk%Ak^

- H(Ck |

i) + H(Ck

- H{Ck |

- H{Ck |

PkJ,Pkj-i,

by (4)

|A, i ,£M)

by (1)

0] by (4)

Due to the facts that the elements in Bkj are leaves in Tkj, and Bkj-i is the set of
leaves in Tj^yj, and Pkj-t = Pf(kj-i)j-i, (*) implies that for every C € 5A,J and

Hence,

for 2 < j < n — 1. Using (4), we get

J-i) < e,
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and Lemma 4.1 implies

H(Gk | Pklj, AkJ) = H(Ck | Bkih Akij_u PkJ)

< H{Gk | Pkj^Pkj-u AkJ.i) +1.

Hence

£;H(Pkj) < H(Ck | Pl) + JZH{Pk,i I Ck,AKJ.x)) + ne.

We are now ready to present a proof of Theorem 5.1:

Proof
By using Lemma 5.2 for all even indices we get

1=0 1 = 0

- Is
2 " E :

»=0

= E
2 n - l _ :

1 n

I

; = 2

1 = 0

j 1 C/(2i,l), • • • , ^ ( 2

2»—1 i

ij)) ~ 2""1

•=0 i=0

Since f{2i, 1) is always odd, and since /(•, 1) is a permutation

i 2

E (̂̂ 2<+i) = E
i=o i=o

Using (2) twice this implies

E
i=0 1=0 j=2

Now consider the sum

1=0

2 E " 1 E HiPiij I C / ( a i>1) f..., Cf(2iJ)) - 2""12ne +
»=0 j=2

2 E ' ^(C/(*.D I ̂ ».i) + 2 E l ^(^.-.0 (**)
t'=0 i=0

E
1=0
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for a fixed j (2 < ; < n). Let k = f(2i,j). Then

and hence
C/(2i,,) € fit,,,

for 1 < s < j ' — 1, but Cfc is no£ in Bj,j. By (4) this implies

Since f(2i,j) is odd and /(•, ;) is » permutation we obtain that (writing A; = f(2i,j)
as 2/+1)

and by Lemma 5.3

«=0 3=1

(=0 j=2

V"~* fST^ III P ^ U(C I Z3*M On~l«i,r (4, •*. -t^
— / j \/ j -" \* 21+1J) — - " \^2l+l | •'o /J — ̂  **^ V ^

1=0 j=2

Combining (**) and (* • *) results in

i=0 1=0 j=.2

E #(C/(2.,i) I P2i,i) + E ^(-^'M)) by (**)
i=0 i=0

2""1—1 n

_ £_j 12_, •" l-*2'+l.jV ~ ^ ll-'2/+l I -Mj /J — * " — "•
/=0 i=2

2n~J—1 2n~*J —1

2"—*—1 n

1=0 ;=2

/=0 /=0

1=0 j=2 i=0
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At *) we use the fact that for every j = 1,2, .  . . , n 

l = O  i = O  

This completes the proof. 

6 Applications to Secret Sharing 
Theorem 4.2 and 5.1 give lower bounds on the size of transferred electronic money. 
In this section these theorems will be discussed from a dXerent point of view. 

Consider the tree in figure 2. If p l , ~ , .  . . , p ,  are considered as k-bits secrets and 
c-1, cz . . . , %+I as shares of these secrets, then this tree depicts a situation, where a 
person (dealer) has n secrets and wants to distribute them among n + 1 persons in 
an information theoretic secure way, such that for every i = 1,2,. . . , n, it is possible 
to find pi from ci and cj, where i < j 5 n + 1. Theorem 4.2 says that the share c,,+l 
must be at least nk bits. It is not hard to generalize the theorem to show that each ci 
must be at least i k  bits long for 1 5 i 5 n. These lower bounds on the sizes of shares 
axe also optimal as they can be achieved by choosing rl ,  .. . , r, E (0, at  random 
and letting 

C' = r1 a3 PI 

ci = (rl, ... ,r,-1,r,@p,) fo r i=2 ,  ..., n 
cn+l = (r1, r2, * * * , rn) 

The result in Section 5 can also be described in tenm of secret sharing schemes 
- although this time the schemes are somewhat unusual. Again we consider the 
identities of the payers to be secrets and the coins to be shares of the secrets. Hence, 
there are 2" - 1 secrets and 2" persons, who get shares q,, . . . , ~ 2 n - 1 .  The access 
structure is defined by the tree described in Section 5. 

It is required that the share, q may only contain Shannon information about the 
secrets on the path from the root to itself. Hence, c2 may for instance contain all 
Shannon information about p i ,  and p:, but it may not contain information about 
other secrets. If each is a uniformly chosen k-bits Becret Theorem 5.1 says that 

2"-I 

H(Ci)  2 n2"-'k - 2"-'n3~. 
i=o 

Again, this result is optimal, as it is possible to give values to each 
and 

such that E = 0 

2"--1 

H(C;)  = n2"-'k. 
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Assume that k is even. Let 1.1 denote the first 5 bits of x E {O,l)k, and let [XI 
denote the last bits of 5.  For the case n = 8, the lower bound can now be achieved 
as follows: 

:= (LdJ ,  b2J9 L d J )  
c1 := (MJ , IAJ) Id1 1 
c2 := (bA1 biJ) 

. I .  

c7 := ( r ~ i  rp;i , rP:i 

Here each share consists of 9 bits as required, 
can also be shared in an information theoretic secure way. This can 

be done by letting each share c; consist of 3k bits. This shows that the lower bound 
from Section 4 can not be improved using the tree from Scction 5 .  

The secrets 

7 Conclusion 
This paper has demonstrated that it is not possible to construct off-line electronic 
payment systems without allowing extra bits for transferred money. On one hand 
this limits the practical use of electronic money, and on the other it shows that the 
general method described in Section 3 is close to optimal, because the transferred 
money in this scheme only increases by the number of bits needed to identify double- 
spenders with high probability. However, the known payment systems require more 
bits for this purpose than the actual number of bits needed to uniquely describe a 
payer. It would therefore be interesting to construct an off-line payment for which 
fewer bits are needed to compute the identity of double-spenders. 

It was mentioned that the method suggested in [vA90] has the problem of forward 
traceability, and it was further argued in Section 4 that a person with unlimited 
computing power can probably always trace his money forwards. This leaves open 
the following problems: 

0 Prove that an unlimited powerful payer can always trace his transferred money; 

0 Construct a payment system in which forward traceability, although possible, is 
not feasible (under some assumption). 
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