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Abstract. All known digital signature schemes can be forged by anyone having 
enough computing power. For a finite set of participants, we can overcome this 
Wealaress. 

We present a polynomial time protocol in which a participant can convince 
(with an exponentially small error probability) any other participant that his 
signature is valid. Moreover, such a convinced participant can convince any other 
participant of the signature’s validity, without inreraction with the original signer. 

An extension allows. in most cases, a participant who receives a signature from 
any source to convince each other participant of its validity. If a participant cannot 
use the signahue to convince others, he knows so when he receives it 

1. Introduction 

For many purposes digital signatures, as originally proposed in [DH76], are a 
useful tool: everyone can test the validity of a signature and no one can forge one. 
Some well-known examples are the RSA-scheme ([RSA78]), the scheme of 
ElGamal ([ElG85]), and the Fiat-Shamir scheme ([FS87]). They all rely on 
cryptographic assumptions, which means forgery is, in principle, always possible 
by someone using enough computing power. 

The scheme we present here does not have this disadvantage: even someone 
with infinite computing power is unable to forge a signature. The price we pay for 
this is that our scheme has to be set up among a fixed, finite set of participants. 

In [RB89], a “non-cryptographic weaker version of digital signatures” was 
introduced. Their model is essentially the same as ours. Unlike a digital signature, 
however, their scheme requires each recipient to conduct a protocol with all other 
participants to test a signature after it has been issued to him. Even so, only a 
Participant who receives a signature directly from the signer can convince another 

A,J, ~~~~~~~ and s.A. vanstone (Eds.): Advances in Cryptology - CRYPT0 ‘90, LNCS 537, PP. 206-214, 1991. 

@ Springer-Verlag Berlin Heidelberg 1991 



207 

participant. In contrast, our result is a true signature scheme: a signature is a 
collection of bits which can be verified independently by any recipient and 
successively transferred to other participants who can do the same (a related work 
based on cryptographic assumptions is described in [BPWgO]). 

In establishing the public key in our scheme, the signer receives messages 
from the other participants by an untraceable sending protocol, like that introduced 
as “the Dining Cryptographers Problem” ([ChaM]). The signature will contain 
some of the values that were received. The essential observation is that since the 
signer does not know who sent what, he will be unable (except with very small 
probability) to give a signature that one participant will accept that will not 
similarly be accepted by any participant. 

Section 2 describes the model and the assumptions we make, and gives a 
precise definition of our aim. In Section 3, a known untraceable sending scheme is 
introduced. Here we also explain how to make it impossible for a disruptive 
participant to change (one of) the numbers sent by someone else without being 
caught. Section 4 explains the basic protocol, and shows that it achieves the 
desired result. In Section 5 ,  we extend the protocol such that a first receiver can 
convince a second receiver, and that each participant who receives the signature 
later on knows a priori if he can convince a next receiver. In the last section some 
final remarks will be made. 

2. Setting and Objectives 

In the fiist subsection we give the setting we work in; in the second subsection the 
objectives are given. 

2.1. Model and Assumptions 

We assume that the “world” consists of a finite set P of n participants 
(PpP2....*Pfi). 

We assume the following means of communication between participants: 
1. an authenticated broadcast channel. This enables each participant to send the 

same message to all other participants, identifies the sender, and is completely 
reliable. In particular, if any participant receives a message via the broadcast 
channel, all other participants will receive the same message at the same time. 
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2. a private, authenticated channel between each pair of participants. Such a 
channel cannot be read or tampered with by other participants, and each of the 
communicants is absolutely sure of the identity of the other. 

2.2. 0 bjectives 

We want a participant S to be able to send a bit b to a participant R such that the 
following conditions hold: 
1. only R receives 6.  
2. R can prevent S from convincing other participants that he sent b@l. 
3. R can convince any participant that he got b from S .  
4. R cannot convince any participant that he got b@l from S. 

Our aim is to obtain the four conditions, using a protocol that is polynomial time in 
a security parameter m, but with an error probability that is exponentially small in 
m, and we do not require any limitations on the computing power available to each 
participant. 

Notice that in models which rely on cryptographic assumptions there is a 
difference between cheating that can be done offline at home, without risk of 
detection, and cheating which involves a substantial probability of being detected. 
Since we have no such assumptions, in our model there is no difference between 
the two. 

3. Background 

We make use of an Untraceable Sending protocol as introduced by [Cha88] and 
further elaborated by [BB89] and [pfi891. 

This protocol allows participants to send messages (elements of the abelian 
group (Z,,, +)) to a fixed participant S, such that S does not know who sent which 
message. 

The protocol relies on the use of keys. A key is a random group element, 
known by two participants. One of them uses the key, the other the negative 
(modulo v )  of the key ([BB89], Ipfi891). 

Every participant, except S, broadcasts the sum (mod v )  of his message and 
all keys he shares. Only one participant, who is allowed to send, has a message 
unequal to 0. Now S computes the sum (mod v) of all sums broadcasted and his 
own sum. This equals the message, because all keys add up to 0. 
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It is not necessary that each pair of participants shares a key; even if a 
particular participant shares only one key that another participant does not know, 
that participant cannot compute the first participant's message. Let the 
participants share keys according to a trust graph T on the participants: if (Pi,P,) 
is an edge in T, Pi and Pj trust each other, and they share a key. 

We start with a completely connected graph T. If a particular round is 
disrupted (how to detect this will follow from Section 4). this round is entirely 
opened (i.e. all secret messages and keys are broadcasted), resulting in dis- 
agreement about a key or in detection of a participant who disrupted. In the first 
case, the corresponding edge in T is removed; in the second the corresponding 
vertex of T is removed. 

Thus, opening a disrupted round always results in a reduction of T, and only 
vertices corresponding to disrupters and edges connected to at least one disrupter 
are removed. 

4. Basic Protocol 

We want some participant S E P to send a random bit b,  with his signature 
attached to it, to some participant R E P. To achieve this, d l  participants initially 

agree on a security parameter m, such that m-(0.65jm, upper bounding the 
error probability, is sufficiently small, and they agree on a prime p ,  2m < p < 

First we need a preparation phase in which each of the n-1 participants 
2m+'. 

unequal to S sends untraceably m pairs of random numbers to S. 

Round p of the preparation phase (1 I p I m) looks like: 
step 1. The participants start with a subprotocol, called the reservarion phase, to 

determine the order in which they have to send their messages. This 
subprotocol is described in [Cha88]. 
If it is not successful, this can be due to collision or to disruption. In the first 
case the participants just start again with the reservation phase; in the 
second, T is reduced before doing so. 
After a successful reservation, the only thing each participant unequal to S 
knows is when he is allowed to send. 

step 2. Each participant (# S) sends S untraceably and in the def ied order a pair of 
numbers ( N o ,  N1) chosen uniformly from Z, x Z,, and their product 
C := No.N1 mod p .  A disrupter can modify the pair by adding (modulo 
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p) some non-zero pair to it, but since S only accepts pairs (No ,  N1) for 
which the received C equals the product modulo p of N o  and N ’ ,  the 
probability that S accepts a modified pair is smaller than 2-m (see below). 
If S does not accept a pair, this round is opened, T is reduced, and the 
participants start again with step 1. 

- - CI 

After the preparation phase we can start with the signing phase: 
S has obtained the (n-1) x m matrix A :  A i j  = (Noi,, N 1  V .., C i j )  for 1 I i 

I n-1, 1 5 j I m. S only knows that each participant has sent him one entry of 
each column, while the participants distinct from S also know which entries of each 
column are theirs. 

S sends his bit b to R by sending him b and the (n-1) x m matrix Ab:  

Abjj = NbiT R accepts this bit b if all the Elb he sent to S are correctly contained 
in this matrix. 

R can convince an other participant P that he got b from S by sending him Ab. 
P accepts b from R (i.e. he is conviriced that R accepted b from S) if he sees at 
least half of his Nb correctly in this matrix. If the protocol would require P to see 
all his Nb correctly, it would be rather easy for a disruptive S to convince R, while 
R could not convince anyone else. 

CI - - 

CI 

One can compute the following error probabilities: 

IP(R has reason to reject a bit b that a non-disrupt S sent him) 
= P(at least one Nb of R is disrupted, but still accepted by S) 

1 
I m -  - 

P - 1  
I r n ~ 2 - ~ .  

CI 

Since in round p of the untraceable sending protocol S receives n-1 N b ,  
and sends a subset of them to R (after he received the whole set of m.(n-1) 
ib), we find: 

P (R  has reason to accept a bit b, which a non-disrupt P does not accept 
from him) 

1 24 
= c G) (P (from a column of A, S sends both R’s and P’s to R))k 

k=O 
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( P ( h m  a column of A, S sends R’s I?’ to R, but not P’s $))” 

k= 1 

c 

- - 

c 

c 

< 

C 

P(P has reason to accept b e 1  from (a disrupt) R, while R got b from S) 

2-m. 

IP(P has reason to reject 6, while both S and R were honest) 

2-m. 

As a consequence, an upper bound on the error probability is m-(0.65)m. 

5. Transferability 

In this section we will denote the first receiver R by Rl and the second receiver P 

At first glance, R2 can pass the signature to a third receiver R3, just as Rl 
passed it to him. But the problem is that R2 does not know how many of R3’s 
numbers in the matrix have been changed. 

If only half of R2’s numbers in the matrix were correct, of course an honest R2 
does not want to guarantee that the same fraction (or more) of R3’s numbers are 
correct. Therefore, each time the signature is passed, the number of correct entries 
required has to be reduced. 

This scheme has two disadvantages; m has to be very large if there are a lot 
of (potential) receivers, and each receiver has to know his position in the chain. 

by R,. 
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Therefore we adapt the scheme such that a receiver cannot change any of 
m.(n-1) N -6 without being caught by the receiver he passes the signature to. 

the 

X . i  the preparation phase, instead of sending ( N o ,  N', C), where C = 
N 0 N '  mod p, each participant sends a set of four numbers ( N o ,  N', K, C), 
where N o ,  N' and K are chosen uniformly from Z,, and C is their product 

N o - N 1 - K  mod p. S only accepts triples (;*, F1, E) for which the received 
C equals their product modulo p ,  thus the probability that he accepts a modified 
triple can easily be calculated to be smaller than 2-=. 

- 

K is a key that determines a hash function HK from a universal class of hash 
functions that map arbitrary large inputs to numbers of Zp. Given K, each 
participant knows HK.  

CI c* c 

When S has obtained the (n-1) x m matrix A : A i j  = ( N o i j ,  N l i j ,  K i j ,  

Ci j ) ,  the signing phase can start. To send a bit b to R,, S sends him b and the 
(n-1) x rn matrix A6: Abij = (Nbi j ,  X i j ) ,  where the checksums X i ,  are defined 

- 
CI 

by the following funtion on ordered sets: - 
X j j  := H f i i ( ( N b k l  I 1 I k c n, 1 I I S  m )  u ( X k l  I 1 I k < n, 1 I I < j } )  + 

imlU modp. 
In words: the Xu are output values of a hash function on all message numbers 

and all checksums of the previous columns. Tire random number NbelU is added 
to make it impossible for a disruptive receiver who was not the sender of Aii to 
calculate the key Kit Thus a receiver who modifies one of the Nbu is unable to 
change the checksums accordingly. Therefore, a receiver who finds at least one of 
his checksums correct, knows that all message numbers are as S sent them to the 
first receiver. 

R, checks that all the N6 he sent to S are correctly contained in Ab, and that 
all his checksums are correct. If something is wrong, R, knows S is a disrupter and 
he rejects the signature. 

Each of the following receivers Rk (k 2 2) checks if at least half of the Nb he 
sent to S are correctly contained in Ab.  If this is not the case, Rk rejects the 
signature and knows that Rkel or S has been cheating. Otherwise Rk checks his 
checksums. If at least one of them is correct. he assumes that all random numbers 

CI 

CI - 
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are as S gave them to R,, as it is very unlikely that a preceding receiver modified 
them and guessed correctly a corresponding checksum. In this case Rk strongly 
accepts the signature, which means that he is convinced that receiver Rk+l will 
accept it from him. On the other hand, if none of R,’s checksums is correct, Rk 
has no idea of how many of an other participants’ message numbers have been 
changed. Therefore he only weakly acceprs the signature: he is convinced that S 
gave b to R,, but he is not sure that he can convince someone else. 

A receiver Rk can get additional information from the structure of the received 
matrix. For example, if Rk does not find all his N b  correctly in Ab, but at least 
one correct checksum on the values in the matrix, he knows that S has been 
cheating. The same holds if R, finds an incorrect checksum that is the input of a 
correct checksum. 

If a receiver would tell the next receiver which prefix of columns he can check 
that actually originate from S, it is even more often possible to point out a disrupter 
who is responsible for inconsistencies. 

6. Summary and Suggestions for Further Research 

We devised a signature scheme that is of polynomial complexity in the number of 
participants n and the security parameter m, allowing each of the participants to 
convince each other participant of the validity of his signature. Moreover, this 
convinced participant can convince every other participant of the signature’s 
vdidity, without interaction of the original signer. 

An extension of this scheme, that is still of polynomial complexity, allows B 

participant that receives the signature from any source to check u priori if he will 
be able to convince every other participant of the signature’s validity (without 
interaction with the original signer). 

For some applications (e.g. multiparty computations), it would be useful if non- 
acceptance of a signature from the original signer S, would enable the other 
participants to decide who is disrupting. 

It would also be nice if a receiver of the signature, upon noticing 
inconsistencies, would know who has been cheating. 
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Finally, the efficiency of the scheme would be significantly improved if it was 
possible to sign arbitrary messages instead of single bits. Research is currently 
being done at CWI to use a universal hashing function on a message with the two 
numbers N o  and N 1  as keys, instead of just choosing N b  for a single bit 
message b. 
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