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Abstmct The homomorphic structure of RSA signatures can impair security. Variations on a 
generalization of RSA signatures are considered with the aim of obviating such vulnerabilities. 
Of these variations, which involve a function of the message in the exponent, several are shown to 
have potential weaknesses similar to those of FSA. 

No attacks have been found for one of the variations. Its security does not depend on 
redundancy present in or artificially combined with messages. The same holds for a well-known 
use of RSA that relies on a one-way compression function. A comparison between the schemes 
is given. 

introduction 

The RSA signature function is a homomorphism with respect to multiplication. This multi- 
plicative property can be useful, since it allows various powerful techniques, such as blind signa- 
tures [Chaum85]. However, the property also means a potential weakness for RSA signatures 
used in other applications, sine it prevents some redundancy schemes from securing RSA signa- 
tures against attacks based on the property [DeJChU]. 

One solution would be to find redundancy schemes that are able to resist such attach. 
Another solution, which has been well-known in the folklore and offers some advantages, is to 
make use of a one-way compression function. A third approach is to try to find signature 
schemes that do not have such unwished for properties. This last approach is the main subject of 
this paper. 

The RSA digital signature scheme is extensively reviewed in section 2. Particularly, that 
section treats in some detail the aspects relevant to this paper: redundancy, chosen signature 
attacks, multiplicative attacks, chaining and compression. 

In section 3 a generalization of RSA signatures is introduced. This generalization 
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encompasses, besides RSA, various other digital signature schemes. The properties of one of 
these schemes are analyzed in section 4 and compared with RSA in section 5. 

1. RSA signatures 

In the signature scheme of Rivest, Shamir and Adleman [RSA78], now widely known as 
RSA, each user chooses a large number n, which is a product of two large primesp and q, and a 
pair of numbers (e,d) such that e.d is congruent with 1 modulo Hn). Here, + denotes Euler‘s 
totient function and, since n isp-q, +(n) is equal to @ - 1). (q - 1). Each user has to publish his 
n and e, but should keep secret his d. 

In RSA, a user A can construct a signature SA on a suitable numeric message M by com- 
p u h g  S,(M) = MdA mod ?!A, where dA is A’s secret and nA is A’s published product. 

Since for other persons finding dA is as difficult as factoring nA (which is, as far as we 
know, infeasible for large, appropriately chosen nA), only user A can compute SA ( M )  in practice, 
so long as he keeps his dA secret. As a consequence, anyone can substantiate a claim that A 
signed M if he can come up with SA(M).  

However, if somebody comes up with a number S and claims that it is M signed by A,  one 
should be able to check whether indeed S is equal to SA(M).  Since only A can produce S,(M), 
this check cannot be performed directly. But anyone can compute SPA mod nA using the public 
numbers eA and n ~ .  If the result of this computation is not e q d  to M mod n A ,  then s cannot 
have been equal to S A ( M ) ,  since 

(SA(M))‘” mod nA = MdA’eA mod nA = 34 mod nA, 

Thus, if somebody comes up with a number S for which Se” mod nA is equal to M ,  then one 
should be convinced that A signed M ,  otherwise not. 

In RSA messages must be restricted to natural numbers less than n. (How to deal with 
larger messages wi l l  be explained in section 2.3.) Without this restriction, messages that are qd 
modulo n would have the same signature. Since n is publicly known, fraud would be too WY. 
One should not even use all numbers M with 0 =Z M < n for messages to be signed. 

1.1 Redundancy to prevent a chosen signature attack 

Rivest, Shamir and Adleman recommended that n be about 200 decimal digits long, which 
amounts to about 664 bits. For concreteness and convenience, while retaining an ample m a r e  
of safety, we will assume for the rest of this paper that n is 800 bits long.* Thus, a message can 

* One cannot choose n arbitrarily large, since the practicability of RSA decreases as n increases, due 
to the increasing computational cost of exponentiation. 
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comprise as much as 100 bytes. 

A forger can choose a number S,, whh S, < n ~ ,  and compute M, = (S,)‘” mod n~ from 
it. Subsequently, he could claim successfully that S, is the message M, signed by A. Since 
exponentiation modulo n acts as a one-way function when Hn) is unknown, this chosen signature 
attack can be used for finding signatures on “random” (i.e., unpredictable) messages only. (In 
other words, nobody but A can make the signature on a chosen message, but anybody can deter- 
mine which message corresponds to a chosen signature.) 

To prevent such unpredictable messages from having a reasonable chance of being mean- 
ingful, it is necessary to have redundancy in the messages. Thus, a distinction will be made 
throughout the paper between messages and valid messages. AU numbers M with 0 < M < n  are 
messages, but only a very small fraction of these are valid messages. For example, if 100 bits of 
redundancy is used, a chosen signature will have only a chance of 2-’O0 of corresponding to a 
valid message. Thus, finding a fake signature (ie., a signature on a valid message not actually 
s iped  by A )  will cost 299 trials on the average, which makes a successful chosen signature attack 
infeasible. 

Finally, notice that messages need redundancy against a chosen signature attack because 
RSA is a readable Signature scheme; i.e., a scheme whereby anyone can derive the message signed 
from the signature. 

1.2. Multiplicative attacks 

The need for redundancy in M A  messages has been established. To prevent a chosen sig- 
nature attack only the p m t i f y  of the redundancy present in valid messages is of interest. Still, 
the nature of the redundancy is also important, since RSA signatures have the property of being 
mdtiplicative. 

For example, suppose that person B can construct three valid messages M I ,  M2 and M3 
such that M3 = ( M , . M 2 )  mod nA. Then, if he succeeds in getting M i  and M2 signed by A ,  he 
can form the product (modulo nA) of these signatures to get a false signature on M3, since 

s ~ ( M 3 )  = ( M I ‘ M ~ ) ~ ~  mod n~ 

= ((@ mod n A )  . (& mod n ~ ) )  mod n~ 

= ( S A ( M I ) .  sA(M2)) mod n ~ .  

B can also use the inverse M-I or the opposite - M  of a message A4 of which he knows the 
corresponding signed version, as a factor in a product forming a new message, for, 
S A ( M - ’  mod n ~ )  = (SA(M))-‘ mod nA and S A ( ( - M )  mod nA) = ( - S A ( M ) )  mod n ~ .  (This 
last equation is true, because dA is known to be odd.) 

Thus, if B knows A’s signature on one or more valid messages M,,  he can easily forge a sig- 
nature for any new valid message which he can discover how to rewrite as a product of 
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message(s) M;, their oppositNs) - M ~ ,  or their invers4s) M,’ (all modulo nA). motice that a 
message and/or its opposite and/or its inverse may occur in such a product more than once.) 
Therefore, the redundancy should prevent feasibility of discovering such valid messages. 

As already mentioned, the protection that a redundancy scheme offers against a chosen Sig- 
nature attack depends only on the amount of redundancy. For protection against multiplicative 
attacks, however, the nature of the redundancy is also important, because the m c u l t y  of finding 
valid messages that are products of other valid messages or their inverses can be different for two 
redundancy schemes, even if both use the same amount of redundancy. Indeed, for some redun- 
dancy schemes it seems feasible to find such combinations even though these schemes command a 
considerable amount of redundancy [DeJCh85]. 

For example, in two simple redundancy schemes each message must start (respectively end) 
with a sequence of, say, 100 zero-bits to be accepted as a valid message. Although these two sim- 

ple and well-known techniques to add redundancy make a chosen signature attack infeasible, they 
do not generally provide sufficient protection against multiplicative attacks [DeJCh85]. 

1.3. Chaining or compression 

Since our RSA only provides signatures on messages of at most 800 bits, some method is 
needed to make it also useful for larger messages. 

An obvious approach is to split messages up into appropriate parts, and then to sign each 
part separately. To e m r e  that the parts are not re-ordered, they should be chained in some way; 
i.e., each part should contain extra information linking it unambiguously to (an)other part(s). 

Another solution is to use. a suitable, publicly known, one-way, compression function Fc (see 
also section 4.4), which maps a message of any size to some 800-bit number, before applying the 
RSA s i w g  function. Thus, A’s signature on a message M then will be (F,(M)f^  mod nA . 
Note that the function F, indeed needs the one-way property. Otherwise, a person having 
acquired A’s signature on some message could determine some (or all) other messages having the 
same signature, and could claim successfully that he got such messages from A. 

The one-way property of F, implies that the signatures have become unreadable (which 
means that the message cannot be derived from the signature), which has two implications. First, 
the message itself must be delivered together with the particular number which constitutes its sig- 
nature; i.e., a signed message consists of the pair ( M  , (F,(IV))~^ mod n~). Second, redundancy 
no longer has to be present in M to prevent the chosen signature attack. (Clearly, a chosen sig- 
nature attack does not work if it is infeasible to find a message for which the chosen bit pattern is 
a true signature.) Thus, any bit pattern may represent a valid message, and a signed message 
needs only 100 bytes more than the actual message (i.e., the original message without added 
redundancy) itself. Therefore, this scheme may be more (storage-)efficient than RSA with chain- 
ing, particularly for large messages. 
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In the case of RSA with chaining, each part of the message must be signed and/or checked 
separately. Therefore, the costs of signing and/or checking a large message is linear in its Size. 
(Thus, if a message is, for example, three times as long as another large message, signing it costs 

three times as much as signing the other one.) When RSA is used with compression, after the 
compression only one part of 800 bits is st i l l  involved. Thus, if the computation required for the 
one-way compression can be made relatively cheap, RSA with compression will be more 
(time-)efficient than RSA with chaining (which subsequently wiU also be called: basic RSA). 

Although redundancy is no longer required to prevent chosen signature attack, some well- 
chosen redundancy may still be necessary to prevent a multiplicative attack. For example, this 
would be the case when the compression function Fc is a homomorphism with respect to multi- 
plication modulo n on a considerable part of its domain; i.e., if for many M I  and M 2 :  
Fc{Ml.M2) mod n = (Fc(M1)-Fc(M2))  mod n. 

2. Generalized Exponentiation Signatures 

As explained above, the multiplicative property of RSA means in particular that one should 
be very careful in choosing a redundancy scheme. Instead of looking for a suitable redundancy 
scheme, we will try to solve the problem by finding a signature scheme that does not have such 
unwished for structure. Thereto, we introduce a generatization of RSA which uses functions of 
M and n in the base as well as in the exponent, while preserving the idea of choosing n a~ a pub- 
lic product of secret primes to keep +@) secret. Thus, in this Generalized Exponentiation Signa- 
ture (GES) scheme, signatures look like: 

F A M n )  mod n, F1(M,n) 

Since only knowledge of Nn) should provide the ability to make signatures corresponding to n, 

function F2 is supposed to comprise at least the computation of an inverse in modulo dn) arith- 
metic. 

Obviously, RSA is a special case of GES whereby FZ is chosen to be a constant function 
always mapping to d = e - l  mod Hn), and whereby the function F1 comprises, for example, the 
redundancy mapping and/or the compression function. In the following, three other signature 
schemes, which are special cases of GES, will be investigated. The first two of these will be 
shown to give problems similar to those of RSA. The third variation of GES seems a more 
promising alternative to RSA. 

2.1 A first variation 

In our first example, F l  and F2 are chosen to be M mod n and (M-d) mod +in), respec- 
tively. (Note that it makes no difference at all whether F1 is chosen to be M or M mod n. simi- 
larly, it is equivalent to have just M d  for F 2 . )  Thus, a signature looks like: 
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M M.d mod n. * 

In this scheme the combination of a multiplicative property in the base (like in RSA) and an 
additive property in the exponent may seem to make it more difEcult to tamper with signatures 
to produce a false one. However, the following counterexample shows that this scheme does not 
offer a significant improvement. 

Suppose one has two messages M 1 and M 2  signed by A. By raising the signature on M I  
to the power M2 (in modulo nA arithmetic) one gets: 

( ~ 1 ~ ’ ~  mod nA)M2 mod nA = (MIMiMZd> mod nA. 

Similarly, one can raise the signature on M 2  by M I .  Multiplying both results gives A’s signature 
on Ml.M2,  for, 

Thus, if one knows A’s signature on one or more valid messages Mi, one can easily forge a 
signature for any new valid message that one can discover how to write as a product of 
message(s) Mi. Consequently, the only achievement is that the inverses of these M j  cannot be 
used as factors in such products, as was the case with RSA (see section 2.2). 

2.2 A second variation 

In a second variation of GES, F 1  and Fz  are chosen to map to a constant number C and 
to the inverse of M in modulo N(n) arithmetic, respectively. In this variation A’s signature func- 
tion is: 

S A ( M )  = C”-’ mod n.4 

(How to guarantee that the inverse needed in the exponent does in fact exist will be treated 
shortly.) 

At first sight this signature scheme might seem to offer excellent protection against tamper- 
ing, since the additive property in the exponent does no harm, because the inverse of a sum is, in 
general, not equal to the sum of the inverses. Thus, the following inequality usually holds: 

However. this signature scheme is open to the following attack. Suppose one has A’s signa- 
ture on a valid message M which can be written as the normal integer product of some factors 
m 1 ,  m2, ...... mk. Thus, 

~~ 

* This first variation of GES can also be considered to be an “RSA with compression” signature US- 
ing the compression function F , ( M )  = M“ mod n. 
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( m l m  *..... m r ) - ’  mod Hnr) 
s A ( k f )  = c mod nA. 

By raising SA(M)  to the power rn l  in modulo n~ arithmetic, one gets SA(rn2rn3 ..... mk). Simi- 
larly, one is able to get a false signature on any other valid message that can be obtained from M 
by erasing one or more of its factors. 

Another point to consider with this signature scheme, already mentioned, was how to 
guarantee that the inverse modulo Hn), which is used as exponent, does in fact exist. For any 
number x,  its inverse modulo +(n) exists only if x is co-prime with Hn); i.e., if gcd(x, Hn)) = 1. 
However, this restriction poses no serious problems, even though Nn) is known to always contain 
the factor 4. 

For example, A c m  choose his public product nA as follows. First he searches for two 
large primes p ’ ~  and q’A (roughly 400 bits each) such that 2 p ’ ~  + 1 and 2 - q ‘ ~  3- 1 are also prime. 
Then A takes n~ = PA ‘qA with PA = 2p’A + 1 and qA = 2 y ’ ~  + 1. As a consequence, HQ) will 

be 4 p ’ ~ y ’ ~ ,  and thus almost all odd numbers will be co-prime with +(nA). To be more precise, 
the chance that an odd number is not co-prime with H n A )  is @’A + q k  - 1) / @ I A - q k ) ,  which is 
neghgibly small (roughly 2-400). (Acceptably small probabilities might also be achieved when 
p ‘ ~  and q’A have only large factors.) To get the number to be inverted to be odd, one could 
append a 1-bit to M before computing its inverse modulo +(n~). Note that not only 2M + 1 is 
guaranteed to be odd, but also (2M + 1) mod +(nA), since + ( n ~ )  is even. 

modHnA) mod nA does not 
result in much more security against tampering. Suppose that 2M + 1 is known to be a product 
of some factors rn l ,  m2, ....., mk. The product of any subset of these factors then will be odd 
too, and thus Wiu correspond to some other message M‘. For example, if k > 2 one is able to 
get a false signature on the message M‘ = (m1m2 - 1) / 2. 

(2.F,(M)+ l ) - ’  

(W 4. I)-! The change of A’s signature function to S A ( M )  = C 

A safer signature scheme results if a one-way function F, is used to change the signature 
mod ‘ n A )  mod nA . Making the base number also depend on function to SA(M) = C 

the message to be signed seems to be another way to improve safety. This approach will be 
investigated below. 

2.3. A third variation 

Trying to prevent the attack that appeared to be possible in the previous section, we now 
choose Fl(M,n) = M mod n. For the exponent we use again F2(M,n) = (2M+ I)-’ mod Hn), 
assuming that n is chosen appropriately as described in the previous section. This time, the F2 
chosen is not only su i ted  for solving the problems resulting from the fact that not every M has an 
inverse in mod &TI) arithmetic, but also prevents the following attack that still (!) would be pos- 
sible h case the signature function would be just M‘-’ mod t+) mod n. 

Suppose one would like to get a false signature on the message M .  First, one uses some P 
and Q to wnstruct three messages M I  = MP, M I  = MPQ and M 3  = M2PQ. If one succeeds 
in getting A to sign M 1, M2 and M3,  one can forge A’s signature on M as follows. 
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Computing ( S ~ ( ~ 4 4 2 ) ) Q  mod nA gives (MPQ)(Mp)- ' .  Multiplying this with the mod n~ 
inverse of S, ( M  1 ) gives Q(MP)-'  . In a similar way, one can compute (MQ)(MP)-' from SA (M 1) 

and S, (M3). Multiplying (MQ)(Mp)-' with the mod n~ inverse of Q(Mp)-' gives M(Mp)-' . This 
last number exponentiated with P gives SA(M) = M M - ' .  

In the next section we will examine in some detail the properties of the more promising 
variation which uses F I ( M , n )  = M mod n and F2(M,n) = (uI+ l)-l mod Nn). For conveni- 
ence, this last scheme will be called DJ. 

3. Some properties of DJ signatures 

3.1. Fixed storage costs 

Naturally any GES scheme that uses a function F2 which is really dependent on M is 
unreadable. Thus, DJ signatures are unreadable. Therefore, to give a person a message signed 
by A,  one has to send him both the message M and A's signature on it; i.e., one has to send the 
p & ( M  M (zM +u-' mod mod nA ). AS a consequence, a signed message requires only 100 

bytes more than the message itself (independent of the size of the message, as explained below). 
This is the same as for RSA with compression. 

3.2. No need for redundancy in messages 

DJ signatures being unreadable also implies that messages need no redundancy to protect 
against a chosen signature attack. Since DJ signatures are not multiplicative, messages do not 
need some wellchosen redundancy to prevent a multiplicative attack either. DJ appears to have 
no other unwished for properties such as, for example, being additive. And so, it currently seems 
to be secure against other, similar attacks. 

3.3. No chaining required for large messages 

With DJ it is not necessary to restrict M to, for example, numbers less than n, as in case of 
RSA. Of course, all messages that are congruent modulo n and modulo Hn) wil l  have the same 
signature. But this @ves no problem, since Nn) is supposed to be secret. So, the implicit 
compression that results from the reduction modulo Nn), has the required one-way property. As 
a consequence, it is not necessary with the DJ scheme to use chaining or a separate compression 
function for signing large messages. Furthermore, it is likely that implicit compression is much 
easier (cheaper) to perform than separate compression, since a separate compression function is 
likely to involve a much more complex computation than just a reduction modulo $+I) of 
2M + 1. 
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3.4. Computational costs 

Because of the above mentioned implicit compression, forming a signature costs one 
exponentiation in modulo n arithmetic to an exponent of at most 800 bits. Thus, signing large 
messages is hardly more expensive than signing short ones. However, the same is not true for 
checking a signature. Since only the signer knows his Hn), checking a signature has to be done 
by first raising (in modulo n arithmetic) the given signature to the full 2M + 1 and then checking 
whether the result is indeed equal to M mod n. Thus, the cost of checking a signature is linear in 
the size of the message. (In the sense that checking a twice as large message cost twice as much 
work.) Recall that when M A  is used with chaining, the costs of signing and of checking are both 
linear in the size of the message, since each part of the message must be signed or checked 
separately. 

Of course, as with RSA, it is also possible to use a separate, publicly known, one-way, 
compression function F,. Then A’s signature on a message M will be 
M ( 2 + c ( ~ +  I)-’ mod H ~ J  nA -* 
If the computation required for such a separate compression can be made relatively inexpensive, 
it is advantageous to use it for DJ as well, since the second phase of checking then also consists 
of only one exponentiation to a number of at most 800 bits. (The first phase encompasses the 
computation of F,(M).) 

To show the m e r e n t  demands that RSA and DJ make upon the one-way function, we will 

digress now somewhat into the subject of one-way functions. A usual definition is that a function 
is called one-way if it is not generally feasible to find, for a giveny, an x such that F ( x ) = y .  
However, in the context of cryptographic applications one often adds the requirement that, given 
some x,  it should also be infeasible to find an x’ with x’#x such that F ( x ’ ) = F ( x ) .  

Since we have chosen to use the function F, only in the exponent, the only requirement to 
be imposed on the compression function is that, when knowing some pair (x ,y)  for which 
F,(x)=y, it must be infeasible to find an x ’  for which x‘#x, x’ mod n = x mod n and 
Fc(x’) =y. Thus, with DJ the compression function has to be “one-way” only in a more res- 
tricted sense. As a consequence, it may be much easier to find suitable compression functions for 
DJ than for RSA. 

4. Comparison of DJ with RSA 

Both the RSA and the DJ digital signature scheme are a special case of a GES scheme. 
The basic form of RSA has several unpleasant properties. Since it only works for messages of 
less than logz(n) bits, large messages must be divided into small parts. To prevent forgeries, it is 
necessary to include in each of these parts some bits comprising chaining information and redun- 
dancy, to prevent a chosen signature attack. Furthermore, since RSA signatures are 

* We prefer not to use F J M )  in the base as well. 



58 

multiplicative, the redundancy scheme to be used should be chosen very carefully to prevent SUC- 

cessful multiplicative attacks. Thus, the security of basic RSA signatures (i,e., RSA with chain- 
ing) depends heavily on the quality of the redundancy scheme chosen. 

The following properties of DJ  signatures give them considerable advantages over basic 
RSA signatures: 

Messages and signatures are kept separate. 

Since DJ signatures are unreadable and not multiplicative, messages need no redundancy to 
prevent a multiplicative attack or a chosen signature attack. 

DJ signatures cost loga(n) bits beyond the size of the message. In practice, this means less 
than 100 bytes for a signature. 

The costs for signing a message are more or less constant, because the implicit compression 
means that only one exponentiation to a number of at most logz gn) bits has to be per- 
formed, even for very large messages. (Thus, signing large messages is much cheaper with 
DJ than with basic RSA, since in the latter case such an exponentiation has to be per- 
formed for each part of the message.) 

Every person has to publish only his product n. (The same holds for RSA if one agrees on 
everybody using the same public exponent e.) 

Another way to circumvent the disadvantages of basic RSA signatures is to use RSA with 
compression. This requires a publicly known, one-way compression function that also destroys 
the multiplicative structure. With respect to RSA with compression, DJ has only two advantages. 
The first i s  that DJ even works without using any compression function. (With DJ, compression 
is only useful for bounding the costs for checking signatures on large messages.) Second, a 
compression function has to meet less requirements in case of DJ than in case of RSA; for exam- 
ple, it is not crucial for DJ whether the compression function destroys multiplicative p r o p d e s  or 
not. On the other hand, RSA with compression has the advantage that signatures can be checked 
more economically if everybody uses a relatively small number e as the public exponent. I t  may 
be concluded that RSA with compression and DJ both seem to be good digital signature 
schemes, and that both are better than RSA with chaining. 

Summary 

It has been shown in [DeJCh85] that RSA signatures may be vulnerable to so-called multi- 
plicative attacks. In this paper we have shown a similar potential weakness in the special cases of 
the generalizations of RSA presented that use the functions M M'd mod n, 
dZM +I) - '  +(") mod n, and M'-' mod +(") mod n, respectively. 

A further variation is presented that, although it does not rely on the use of a one-way 
function, does not seem to be vulnerable to multiplicative or other attacks known to the authors. 
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